
Simplest problem of the calculus of variations with end cost

We consider a variation on the problem stated in Section 2.2. The value of the state at time T is
not prescribed, rather there is a penalty on the final state. For notational convenience we denote
the state by q instead of x.
The problem is as follows:
Determine a function q(t), defined on the interval [0, T ], such that the integral

J(q(·)) = S(q(T )) +
∫ T

0

F (t, q(t), q̇(t))dt (1)

is maximized (or minimized), and where q(t) in addition satisfies the boundary condition

q(0) = q0 (2)

for given q0.
The following result is similar to Theorem 2.2.3. The difference is that the condition x(t) = xT is
now replaced by a penalty S(x(T )).

1 Theorem

Consider the simplest problem in the calculus of variations and suppose Assumptions 2.2.1 and
2.2.2 are met. Then a necessary condition that a C2 function q∗(t) maximizes (1) and satisfies
(2) is that q∗(t) is a solution of the differential equation

∂F

∂q
(t, q(t), q̇(t))− d

dt

(
∂F

∂q̇
(t, q(t), q̇(t))

)
= 0 (3)

dS

dq
(q(T )) +

∂F

∂q̇
(T, q∗(T ), q̇∗(T )) = 0 (4)

Proof Suppose the C2-function q∗(t) is an optimal solution and let δq(t) be any C2-function on
[0, T ] that satisfies

δq(0) = 0 (5)

Let α ∈ R, and define a new C2-function

q(t) = q∗(t) + αδq(t) (6)

Note that q(0) = q∗(0) = q0, thus q(t) fulfills (2).
Since q∗(·) was supposed to be an optimal solution for our problem we have that

J(q∗(·)) ≥ J(q∗(·) + αδq(·)) (7)

for all α ∈ R. Now suppose the perturbation δq(·) in (7) is fixed. Then J(q∗(·) + αδq(·)) becomes
a function of the scalar variable α; say

J̄(α) := J(q∗(·) + αδq(·)) (8)

The optimality condition (7) for the given perturbation δq(·) thus translates into the condition

J̄(0) ≥ J̄(α) (9)

for all α ∈ R, or J̄ has a maximum in α = 0. Now, given Assumptions 2.2.1 and 2.2.2 and the
fact that δq(·) is a C2-function, it follows that the function J̄(α) is differentiable. Therefore, it is
clear that at α = 0, J̄ ′(0) = 0 since by (9) J̄ has a maximum at α = 0. Now

J̄ ′(0) =
d

dα

[
S(q(T ) + αδq(T )) +

∫ T

0

F (t, q∗(t) + αδq(t), q̇∗(t) + αδ̇q(t))dt

]
α=0

=
dS

dq
(q(T ))δq(T ) +

∫ T

0

[
∂F

∂q
(t, q∗(t), q̇∗(t))δq(t) +

∂F

∂q̇
(t, q∗(t), q̇∗(t))δ̇q(t)

]
dt (10)
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Integration by parts of the third term in (10) yields∫ T

0

∂F

∂q̇
(t, q∗(t), q̇∗(t))δ̇q(t)dt =

∂F

∂q̇
(t, q∗(t), q̇∗(t))δq(t)

∣∣∣∣T
0

−
∫ T

0

d

dt

(
∂F

∂q̇
(t, q∗(t), q̇∗(t))

)
δq(t)dt

=
∂F

∂q̇
(T, q∗(T ), q̇∗(T ))δq(T )−

∫ T

0

d

dt

(
∂F

∂q̇
(t, q∗(t), q̇∗(t))

)
δq(t)dt. (11)

If, in addition to the boundary conditions (5), we also have δq(T ) = 0, then the first terms in (10)
and (11) respectively vanish and plugging (11) into (10) yields

J̄ ′(0) =
∫ T

0

[
∂F

∂q
(t, q∗(t), q̇∗(t))δq(t)− d

dt

(
∂F

∂q̇
(t, q∗(t), q̇∗(t))

)
δq(t)

]
dt

=
∫ T

0

[
∂F

∂q
(t, q∗(t), q̇∗(t))− d

dt

(
∂F

∂q̇
(t, q∗(t), q̇∗(t))

)]
δq(t)dt

= 0 (12)

where we also used that J̄ ′(0) = 0. So far we have assumed that in our derivation the perturbation
δq(·) was some fixed function. However the equality (12) is obviously true for all C2 perturbations
δq(·) satisfying (5). But this, implies, via the Lemma 2.2.4, that the term between brackets in
(12), i.e.,

∂F

∂q
(t, q∗(t), q̇∗(t))− d

dt

(
∂F

∂q̇
(t, q∗(t), q̇∗(t))

)
(13)

vanishes, or in other words (3) is fulfilled.
If, on the other hand we consider a larger class of perturbations δq that only requires δq(0) = 0,
then we get, in addition to (13):

J̄ ′(0) =
[
dS

dq
(q(T )) +

∂F

∂q̇
(T, q∗(T ), q̇∗(T ))

]
δq(T ) (14)

+
∫ T

0

[
∂F

∂q
(t, q∗(t), q̇∗(t))− d

dt

(
∂F

∂q̇
(t, q∗(t), q̇∗(t))

)]
δq(t)dt

= 0. (15)

Together with (13) this yields that

dS

dq
(q(T )) +

∂F

∂q̇
(T, q∗(T ), q̇∗(T )) = 0 (16)

�

Application to optimal control

This section presents a derivation of the necessary conditions for optimality, the Hamiltonian
equations, based on the variational principles discussed in the previous section and Lagrange
multipliers. It replaces most of the proofs provided in Chapter 4 of the lecture notes.
All the conditions of Section 4.2 apply.
Consider the cost criterion

J(x0, u) = S(x(T )) +
∫ T

0

L(x(t), u(t))dt. (17)
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The objective is to minimize (17) subject to

d

dt
x = f(x, u), x(0) = x0. (18)

The following results cover Theorem 4.2.9 and Proposition 4.2.10.

2 Theorem

Suppose u∗(·) ∈ U is a solution of the OCP. Then there exists a pair (x∗(t), ξ∗(t)) defined on [0, T ]
such that

ẋ∗ =
∂H

∂ξ
(x∗, ξ∗, u∗)T x∗(0) = x0 (19a)

ξ̇∗ = −∂H
∂x

(x∗, ξ∗, u∗)T (19b)

ξ∗(T ) = −∂S
∂x

(x∗(T ))T (19c)

∂H

∂u
(x∗(t), ξ∗(t), u∗(t)) = 0 (19d)

Proof In analogy to the Lagrange multiplier method for optimization of a function under a
static constraint we define

K(t, q, q̇) = ξT (f(x, u)− ẋ)− L(x, u). (20)

Here q = (x, ξ, u) and ξ : R→ R
n plays the role of Lagrange multiplier. The variational problem

that we want to consider is the minimization of

J̃(q) = S(q(T ))−
∫ T

0

K(t, q(t), q̇(t))dt, (21)

under the constraint x(0) = x0 and subsequently under the additional constraint x(T ) = xT .
It will turn out that solutions of these problems automatically satisfy the dynamic constraint
d

dt
x = f(x, u).

Define the Hamiltonian

H(x, ξ, u) = ξT f(x, u)− L(x, u) (22)

The equations (3,4) for the minimization of J̃ are:

∂K

∂x
(t, q(t), q̇(t))− d

dt

(
∂K

∂ẋ
(t, q(t), q̇(t))

)
= 0 (23a)

∂K

∂ξ
(t, q(t), q̇(t))− d

dt

(
∂K

∂ξ̇
(t, q(t), q̇(t))

)
= 0 (23b)

∂K

∂u
(t, q(t), q̇(t))− d

dt

(
∂K

∂u̇
(t, q(t), q̇(t))

)
= 0 (23c)

dS

dx
(q(T ))− ∂K

∂ẋ
(T, q∗(T ), q̇∗(T )) = 0 (24a)

dS

dξ
(q(T ))− ∂K

∂ξ̇
(T, q∗(T ), q̇∗(T )) = 0 (24b)

dS

du
(q(T ))− ∂K

∂u̇
(T, q∗(T ), q̇∗(T )) = 0 (24c)

(24d)
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Expanding (23,24) yields:

ξ(t)T
∂f

∂x
((x(t), u(t))− ∂L

∂x
((x(t), u(t)) +

d

dt
ξ(t)T = 0 (25a)

ẋ(t)− f(x(t), u(t)) = 0 (25b)

ξ(t)T
∂f

∂u
(x(t), u(t))− ∂L

∂u
(x(t), u(t)) = 0 (25c)

dS

dx
(x(T )) + ξ(T )T = 0 (26)

By direct inspection it follows that (25a) implies (19b), (25c) is just (4.74), and (26) is the end
condition (19c). �

If instead of a penalty on the final state, sometimes referred to as a soft constraint, there is a
hard constraint of the form x(T ) = xT , then the necessary conditions reduce to (23) so that the
terminal condition (26) no longer holds. In fact it is replaced by the terminal condition on the
state x. The details are left as an exercise.

3 Theorem (Maximum Principle)

Suppose u∗(·) ∈ U is a solution of the OCP. Then there exists a pair (x∗(t), ξ∗(t)) defined on [0, T ]
such that

ẋ∗ =
∂H

∂ξ
(x∗, ξ∗, u∗)T x∗(0) = x0 (27a)

ξ̇∗ = −∂H
∂x

(x∗, ξ∗, u∗)T ξ∗(T ) = −∂S
∂x

(x∗(T ))T (27b)

H(x∗(t), ξ∗(t), u∗(t)) ≥ H(x∗(t), ξ∗(t), v), ∀t ∈ [0, T ], ∀v ∈ U (28)

Proof [Sketch only] For notational convenience we present the case for which all variables are
scalar. Let (x, ξ, u) be an optimal trajectory where ξ satisfies (27b). Let δu be an admissible input
function and denote by x + δx the solution of ẋ = f(x, u + δu), x(0) = x0. We calculate a first
order approximation of the increased cost due to δu. First notice that

d

dt
δx(t) = f(x(t)+δx(t), u(t)+δu(t))−f(x(t), u(t)) ≈ ∂f

∂x
(x(t), u(t))δx(t)+

∂f

∂u
(x(t), u(t))δu(t)

(29)

0 ≤J(x0, u+ δu)− J(x0, u) = S(x(T ) + δx(T ))− S(x(T ))

+
∫ T

0

L(x(t) + δx(t), u(t) + δu(t))− L(x(t), u(t))dt

= S(x(T ) + δx(T ))− S(x(T ))

+
∫ T

0

ξ(t)(f(x(t) + δx(t), u(t) + δu(t))− f(x(t), u(t)))

− (H(x(t) + δx(t), ξ(t), u(t) + δu(t))−H(x(t), ξ(t), u(t)))dt

≈ dS

dx
(x(T ))δx(T ) +

∫ T

0

ξ(t)(
∂f

∂x
(x(t), u(t))δx(t) +

∂f

∂u
(x(t), u(t))δu(t))

− (
∂H

∂x
(x(t), ξ(t), u(t))δx(t) +

∂H

∂u
(x(t), ξ(t), u(t))δu(t))dt

≈ dS

dx
(x(T ))δx(T ) +

∫ T

0

ξ(t) ˙δx(t) + ξ̇(t)δx(t)− ∂H

∂u
(x(t), ξ(t), u(t))δu(t))dt

≈
∫ T

0

H(x(t), ξ(t), u(t))−H(x(t), ξ(t), u(t) + δu(t))dt (30)
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The last step follows from

dS

dx
(x(T ))δx(T ) +

∫ T

0

ξ(t) ˙δx(t) + ξ̇(t)δx(t) =
dS

dx
(x(T ))δx(T ) + ξ(t)δx(t)

∣∣∣∣∣
T

0

= 0, (31)

where we have used the end condition (26) and the fact that δx(0) = 0.
Since δu is arbitrary it follows, as shown in Lemma 4, that

H(x(t), ξ(t), u(t))−H(x(t), ξ(t), u(t) + δu(t)) ≥ 0, (32)

so that u(t) indeed maximizes H(x(t), ξ(t), u). �

4 Lemma

Let F, u : R→ R be continuous functions such that for all continuous δu : R→ R∫ T

0

F (u(t))− F (u(t) + δu(t))dt ≥ 0, (33)

then for all v ∈ R and all t ∈ R there holds:

F (u(t)) ≥ F (u(t) + v) (34)

Proof Assume the contrary, then there exist a t̄ and a v ∈ R such that

F (u(t̄)) < F (u(t̄) + v) (35)

Because of continuity there exists ε > 0 such that for all t with |t− t̄| ≤ ε:

F (u(t)) < F (u(t) + v) (36)

Define the function δ̃u as follows:

δ̃u(t) = v |t− t̄| ≤ ε (37)
= 0 elsewhere (38)

Then ∫ T

0

F (u(t))− F (u(t) + δ̃u(t))dt < 0. (39)

Of course, δ̃u is not continuous. This, however, is not a problem. For, δ̃u can be approximated
arbitrarily good by continuous functions so that there also exists a continuous function δu for
which (33) is not true. This is a contradiction and the statement follows. �
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