
Natural Language Engineering 7 (1): 47–86. Printed in the United Kingdom

c© 2001 Cambridge University Press

47

From Data to Speech: A General Approach

M. THEUNE, E. KLABBERS
IPO, Center for User-System Interaction,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Email: {M.Theune, E.A.M.Klabbers}@tue.nl

J. ODIJK
Lernout & Hauspie Speech Products,

Flanders Language Valley 50, 8900 Ieper, Belgium

Email: Jan.Odijk@lhs.be

J.R. DE PIJPER and E. KRAHMER
IPO, Center for User-System Interaction,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Email: {J.R.d.Pijper, E.J.Krahmer}@tue.nl

(Received 11 November 1998; revised 10 November 2000)

Abstract

We present a data-to-speech system called D2S, which can be used for the creation of data-
to-speech systems in different languages and domains. The most important characteristic
of a data-to-speech system is that it combines language and speech generation: language
generation is used to produce a natural language text expressing the system’s input data,
and speech generation is used to make this text audible. In D2S, this combination is
exploited by using linguistic information available in the language generation module for
the computation of prosody. This allows us to achieve a better prosodic output quality than
can be achieved in a plain text-to-speech system. For language generation in D2S, the use
of syntactically enriched templates is guided by knowledge of the discourse context, while
for speech generation pre-recorded phrases are combined in a prosodically sophisticated
manner. This combination of techniques makes it possible to create linguistically sound
but efficient systems with a high quality language and speech output.

1 Introduction

In this paper we present a generic system, D2S, which can be used for the con-

struction of data-to-speech systems for various domains and languages. The most

important characteristic of data-to-speech1 is that it combines language and speech

generation. Language generation is used to produce a natural language text express-

ing the system’s input data, and speech generation is used to make this text audible.

1 We prefer to use the term ‘data-to-speech’ rather than the more common ‘concept-to-
speech’, as our system takes as input data retrieved from tables or databases, rather
than some sort of semantic, or ‘conceptual’ representations.

48 M. Theune, E. Klabbers, J. Odijk, J.R. de Pijper, and E. Krahmer

An obvious way of combining language and speech generation in a data-to-speech

system is to incorporate them as two separate modules whose interface consists of

plain text. A serious drawback of such an architecture is that valuable information

for speech generation is lost (Pan and McKeown 1997; Zue 1997). For this reason,

in D2S linguistic information provided by the language generation module is used

for the reliable generation of prosodic markers, thus improving the prosodic quality

of the system’s speech output.

D2S is a hybrid system, in which some parts of the generation process are based on

general, linguistic principles, whereas other generation tasks are carried out using

less flexible, application-specific methods. One of the interesting features of the

language generation module of D2S is that it does not follow the relatively common

pipeline architecture for language generation (Mykowiecka 1991; Reiter 1994; Cahill,

Doran, Evans, Mellish, Paiva, Reape, Scott and Tipper 1999) in which text and

sentence planning precede linguistic realisation. In fact, it contains hardly any global

text planning: sentences are generated from so-called syntactic templates. These are

TAG-like syntactic structures, associated with conditions which determine when

they can be used properly given the current state of the generation process. Speech

generation in D2S can be done using two different speech generation methods:

one based on pre-recorded phrases, which offers high speech quality but is very

inflexible, and one based on diphone synthesis, which offers high flexibility but has

a lower output quality. What the two have in common is that they can make use

of the prosodic marking provided by language generation to determine prosody.

D2S was initially developed with the construction of the Dial Your Disc (DYD)

system, which generates spoken monologues in English, giving information about

recordings of compositions by Mozart (van Deemter, Landsbergen, Leermakers and

Odijk 1994; Odijk 1995; van Deemter and Odijk 1997). D2S is also used for output

generation in OVIS, a Dutch travel information system (Veldhuijzen van Zanten

1998; van Noord, Bouma, Koeling and Nederhof 1999). Earlier D2S-related pa-

pers concentrated on specific aspects of D2S, such as topic management (Odijk

1995), the use of context in language generation (van Deemter and Odijk 1997),

the computation of prosody (Theune, Klabbers, Odijk and de Pijper 1997), and

speech generation (Klabbers 1997). In the current paper we want to give a detailed

overview of D2S as a whole, discussing in particular the link between language and

speech generation.

In this paper, we illustrate D2S and the techniques it is based on using a data-

to-speech system called GoalGetter, which generates spoken reports of football

matches in Dutch. An interactive, on-line demonstration of the GoalGetter sys-

tem can be found at http://iris19.ipo.tue.nl:9000/. Two systems with the same

application domain as GoalGetter are soccer (André, Herzog and Rist 1988) and

mike (Tanaka, Hasida and Noda 1998). However, both soccer and mike generate

commentaries, spoken descriptions of image sequences of football scenes, whereas

GoalGetter generates summaries of football matches, taking tabular information

about the match as input. In that respect, GoalGetter is more like the streak sys-

tem (Robin 1994; McKeown, Robin and Kukich 1995), which also generates sports

summaries, though the sports domain is basketball instead of football. An impor-

From Data to Speech: A General Approach 49

tant difference between GoalGetter and streak is that the latter produces only

written, not spoken, output.

This paper is organised as follows. In Section 2 we briefly describe a range of

possible techniques for language and speech generation, and show where the tech-

niques used in D2S can be positioned along this range (in subsections 2.1 and 2.2

respectively). The role of prosody in data-to-speech generation is discussed in Sec-

tion 2.3. Section 3 provides a detailed description of D2S. We first show an example

of the input and output of the GoalGetter system, and then explain the techniques

that are used in the different modules of D2S, using examples from GoalGetter as

an illustration (Sections 3.1 to 3.3). We end with a discussion (Section 4).

2 Techniques for language and speech generation

In this section we briefly describe a range of possible techniques for language (Sec-

tion 2.1) and speech generation (Section 2.2). In both language and speech genera-

tion, two extremes can be distinguished. At one end of the spectrum we find simple,

application-specific approaches which are generally inflexible and not reusable, and

at the other end we have linguistically motivated approaches, which are more gen-

eral and more flexible but may have practical drawbacks. The language and speech

generation techniques employed in D2S aim at finding a balance between these ex-

tremes, achieving flexibility, efficiency and a good output quality. A key feature of

D2S is that it provides a tight coupling between the language and speech generation

modules in the form of prosody computation. In Section 2.3 we give an overview of

the types of information that are needed for adequate prosody computation.

2.1 Language generation

Natural language generation (or NLG) is the process of automatically creating a

natural language text on the basis of a non-linguistic information representation,

for instance a table or a database record. The simplest ‘language generation tech-

niques’ are based on pure string manipulation. An example is the use of so-called

‘templates’, string patterns that contain empty slots where other strings must be

filled in. As Reiter (1995) points out, linguistic notions hardly play any role in

such ‘canned text’ approaches, which are mainly used for very simple applications

in a limited domain. On the other hand, there are more scientifically oriented ap-

proaches, where the generation process is (at least partly) guided by linguistic

principles. Reiter and Dale (1997) distinguish the following basic tasks that an

NLG-system should perform when going from its input data to a natural language

text:

1. Content determination: deciding which information to express.

2. Discourse planning: ordering the information and determining the structure

of the output text.

3. Sentence aggregation: deciding which information to put in one sentence.

4. Lexicalisation: choosing the right words to express the information.

50 M. Theune, E. Klabbers, J. Odijk, J.R. de Pijper, and E. Krahmer

5. Referring expression generation: creating phrases to identify domain entities.

6. Linguistic realisation: creating grammatical sentences.

Ideally, each of these tasks should be carried out in a theoretically well-founded

manner. In practice, however, such sophistication is usually reserved for only a few

steps of the generation process. This limitation may have several causes. For in-

stance, some NLG systems are aimed (for research purposes) at only one particular

NLG task, e.g., linguistic realisation. Other tasks are then performed in a more ad

hoc fashion (if they are performed at all). Another limiting factor for the deploy-

ment of linguistic rules in NLG is simply that not enough good linguistic rules are

known yet (van Deemter, Krahmer and Theune 1999). Finally, ‘linguistic’ genera-

tion techniques may lack computational speed and efficiency (see e.g., Bateman and

Henschel 1999), which makes them less attractive for use in applied NLG-systems.

However, the use of linguistic generation techniques also has practical advan-

tages. First of all, output texts created using a ‘canned text’ approach tend to be

rather simple (in particular at the discourse level) and show almost no variation.2

In contrast, linguistic techniques allow for the generation of texts that are more

complex and more coherent, making principled use of e.g., anaphora and rhetori-

cal markers. Also, most canned text systems are entirely application-specific, and

therefore not reusable. Linguistic methods are usually general in nature and there-

fore domain- and application independent. They are more flexible and easier to

maintain. Generalising, we can say that canned text approaches offer ease of devel-

opment, computational speed and efficiency at the cost of text quality, generality

and flexibility, whereas for linguistic generation techniques the opposite holds.

It is clear that for the generation of all but the most simple texts, at least some

linguistic knowledge is required. However, given the current state-of-the-art it is

hardly possible to build text generation systems where each generation task is fully

guided by linguistic principles. As a consequence, most applied NLG-systems can

be characterised as hybrid systems, in the sense that some generation tasks are

carried out on the basis of linguistic notions, whereas other tasks are performed

using a non-linguistic method, e.g., by using ready-made text strings. An example

is the IDAS system (Reiter and Mellish 1993), which incorporates those portions

of text that are difficult to generate linguistically as ‘canned text’ in the output.

Other recent hybrid generation systems are described in Carenini, Mittal and Moore

(1994), Geldof and van de Velde (1997), White and Caldwell (1998), Busemann and

Horacek (1998), and Reiter (1999).

The language generation module (LGM) developed at IPO also employs a hybrid

technique, using for instance well-established rules for the use of anaphors, the gen-

eration of referring expressions, and prosody computation, but performing linguistic

realisation by means of hand-made sentence structures. The language generation

technique of D2S is discussed in detail in Section 3.1.

2 Coch (1996) offers a discussion of the weak points of such texts, based on a formal eval-
uation of the quality of business reply letters, written by means of different techniques.

From Data to Speech: A General Approach 51

2.2 Speech generation

The most straightforward way to provide a system with speech output is to simply

record all utterances that one wants the system to be able to pronounce, and then

play them back as required. The obvious advantage is that perfect speech output

quality can be achieved, limited only by the medium through which the speech is

transmitted. The most apparent disadvantage is that this approach is impracticable

in all but the simplest of applications, as it will work only for a limited number of

sentences, which are exactly known beforehand.

The other extreme is to use full-fledged speech synthesis. This offers great flexibil-

ity and has none of the disadvantages inherent to the record-and-play-back scheme.

It is not necessary to restrict the number of possible sentences that can be gener-

ated by the application, and addition of new material to be pronounced presents

no problem. Unfortunately, there is a price to be paid for this flexibility. Although

speech technology has reached the stage where synthesised speech has a high degree

of intelligibility, in general the speech still sounds quite unnatural.

Another solution, somewhere between these two extremes, is phrase concate-

nation: entire words and phrases are pre-recorded, and these are played back in

different orders to form complete utterances. Using this approach, a large number

of utterances can be pronounced on the basis of a limited number of pre-recorded

phrases, saving memory and disk space and increasing flexibility. The key merit

of the technique is that it becomes possible to generate sentences that have never

been produced as such by any human speaker, but with a quality approaching nat-

ural speech. However, this technique is practical only if the application domain is

limited and remains rather stable. Commercial applications in which it is used are,

for instance, travel information services (see e.g., Aust, Oerder, Seide and Steinbiss

1995), telephone banking systems, and market research tele-services.

In the conventional approach to phrase concatenation, all the necessary words

and phrases are recorded only once, often pronounced in isolation. Speech is gen-

erated by concatenating these fragments to form the required utterance, which is

then played. This approach (which we will refer to as ‘conventional concatenation’)

presents two major problems:

• First, the segmental quality of the speech output is often suboptimal, because

the recordings fail to be carefully controlled. The concatenative units are

usually recorded in isolation, which causes mismatch in loudness, tempo and

pitch between concatenated units, leading to disfluent speech. Phrases seem

to overlap in time and create the impression that several speakers are talking

at the same time, from different locations in the room. In order to disguise

these imperfections, pauses are often inserted, which are very conspicuous and

make the speech sound even less fluent.

• Second, the prosodic quality of the speech output is often suboptimal. In nat-

ural speech, the prosody of words in an utterance varies depending on several

factors such as their position within the utterance, the syntactic structure

of the utterance, and the discourse context. For instance, words expressing

information that has been previously mentioned tend to be deaccented. (See

52 M. Theune, E. Klabbers, J. Odijk, J.R. de Pijper, and E. Krahmer

Section 2.3.) By recording all words and phrases in one prosodically neutral

version, such contextual variation is not taken into account.

One simple application that does take some prosodic properties into account is

the telephone number announcement system described in Waterworth (1983). In

order to increase the naturalness of the telephone number strings that are output by

the system, digits are recorded in three versions with different intonation contours.

There is a neutral form, a continuant, with a generally rising pitch, and a terminator,

with a falling pitch contour. Most digits in a telephone number, e.g., 010 - 583 15 67,

are pronounced using the neutral form. However, the numbers occurring before

a space, viz. 0, 3 and 5, are pronounced using the continuant form to signal a

boundary and to indicate that the utterance has not yet finished. The final 7 is

pronounced with a terminator to signal the end of the string. Experiments showed

that people preferred this method over the simple concatenation method.

Another application, a computer-assisted language learning program called Ap-

peal, uses a more sophisticated form of word concatenation to deal with prosodic

variations (de Pijper 1997). When making the recordings the words were embedded

in carrier sentences to do justice to the fact that words are shorter and often more

reduced when spoken in context. Only one version of each word was recorded, but

when, during generation, the words are concatenated to form a text the duration

and pitch of the words are adapted to the context using the PSOLA technique

(Pitch Synchronous Overlap and Add, Moulines and Charpentier 1990). This en-

sures a natural prosody, but the coding scheme may deteriorate the quality of the

output speech to some extent.

Our approach to phrase concatenation can be seen as an extension to the simple

concatenation approach. It is different from conventional concatenation in that (i)

all concatenative units have been recorded embedded in carrier sentences, and (ii)

like Waterworth’s approach, it takes prosodic variation into account by recording

different prosodic versions for otherwise identical words and phrases. No manipu-

lation of the speech signal is required, thus retaining a natural speech quality. The

technique is explained in detail in Section 3.3.

2.3 Computation of prosody: the missing link

In the previous section we already briefly remarked that prosody depends on lin-

guistic context. In text-to-speech systems, the linguistic context of a word or phrase

must be obtained through linguistic analysis of the input text. Such an analysis may

yield unreliable and incomplete results, which has a negative impact on the prosodic

quality of the speech output. However, in data-to-speech the text which is to be

made audible has been generated by the system itself, so information about linguis-

tic context is present in the language generation component. In order to exploit this

information, different solutions are possible. One solution is to have a monolithic ar-

chitecture, where language and speech generation are closely integrated. This design

may be efficient, because all relevant information is directly available, but it has the

disadvantage that language and speech generation are so closely intertwined that it

From Data to Speech: A General Approach 53

Language
Generation
Module

Speech
Generation

Module

Prosody

Module
- --enriched

text
speech signaldata

Fig. 1. Global architecture of D2S

is impossible to reuse either component in another system. An example of such an

intertwined architecture is the SSC (Speech Synthesis from Concept) system pro-

posed by Young and Fallside (1979). In this system, the computation of prosody is

done during speech generation. The two tasks are inseparable, and fully dependent

on the specific input (a full syntactic structure for an utterance) provided by the

preceding language generation component.

An alternative solution, proposed by Pan and McKeown (1997) is to have an

architecture in which language and speech generation are independent modules

which are interfaced by a general prosodic component. The advantage of such an

architecture is that the language and speech generation modules are reusable for

different applications, and that the intermediate prosody component can in principle

be used to couple different language and speech generation components. However,

in practice the usability of such a prosodic component may be restricted by the

variety of linguistic information provided by, and representation formalisms used

in, current NLG-systems. Given this variety, a separate pre-processing module will

be required for almost every NLG-system the prosodic component is to be coupled

with.

Again, our approach is somewhere in between. In D2S, language and speech gen-

eration form separate, reusable modules, which are connected through a prosodic

component (see Figure 1). However, the prosodic component is not an indepen-

dent module in the system, but is embedded in the language generation module,

with which it shares a mutual knowledge source, containing information about the

context. This information is used for computing the placement of pitch accents

and phrase boundaries. The advantage of this architecture is that both language

and speech generation are reusable: the language generation module can be used

stand-alone (without speech output) or in combination with different speech out-

put methods (discussed in Section 3.3). In their turn, the speech output methods

currently employed in D2S can be used in other systems, given that the required

prosodic mark-up is provided in the input. Only the prosody module, which is

inherent to the LGM, cannot be ported to another system.

We now give a brief overview of the kind of linguistic information that is relevant

for prosody computation. First of all, information about the preceding discourse

should be available, because it is important for the placement of pitch accents. It

is generally accepted that in Dutch, as in other Germanic languages, accent func-

tions (among other things) as a marker of information status : words or phrases

54 M. Theune, E. Klabbers, J. Odijk, J.R. de Pijper, and E. Krahmer

are usually accented if they express information that is assumed to be new to the

hearer, whereas they are usually unaccented if they express given information, i.e.,

information that is assumed to be known to the hearer, for instance because it is

has been mentioned previously in the discourse (Halliday 1967; Chafe 1976; Brown

1983). Experimental work has shown that accenting new information, while leav-

ing given information unaccented, facilitates comprehension (Bock and Mazzella

1983; Terken and Nooteboom 1987). The notion of information status also covers

contrast of information: phrases expressing contrastive information are always ac-

cented, even if the information they express may be regarded as given (Chafe 1974;

Hirschberg 1992; Prevost 1995; Theune 1999). Example (1) illustrates the impor-

tance of information status (accented words are printed in small capital letters):

(1) Last week, president Clinton visited the French capital.

His wife doesn’t like France, but the president really loves it.

The second sentence of example (1) contains three instances of deaccentuation

due to givenness: the words his, France and it. The pronoun his is not accented,

because it refers to president Clinton who was mentioned in the preceding sentence

and is therefore already ‘known’ to the hearer. The word France is not accented

because the concept ‘France’ has been evoked in the previous sentence (by the use

of the adjective French) and can therefore also be regarded as given. Finally, the

pronoun it also refers to France and is therefore not accented either. On the other

hand, the phrase the president in the second sentence expresses given information

(like the pronoun his, it refers to Clinton) but, since it contrasts with the phrase

his wife, the word president is still accented.

The placement of accents in a sentence is not only influenced by the preceding

discourse, but also by the syntactic structure of the sentence. Generally, not all

words within a phrase expressing new or contrastive information are accented; which

words are, depends among other things on the syntactic structure of the phrase. In

Dutch and English, it is usually the rightmost word in a phrase which is accented,

unless factors like givenness override this default.

Syntactic information is not only relevant for the distribution of pitch accents,

but also for the placement of phrase boundaries within an utterance. As shown by

Pierrehumbert and Hirschberg (1990), Sanderman (1996) and others, the prosodic

phrase structure of a sentence is co-determined by its syntactic structure. An ex-

ample is shown below in (2) (adapted from Sanderman 1996). To indicate that the

PP with the stick modifies the VP, a phrase boundary (indicated by a slash) may

be placed after the word dog, as in (2)a. If the PP modifies the NP (as in (2)b),

such a phrase boundary is less appropriate.

(2) a The man hit [NP the dog] / with the stick

b The man hit [NP the dog with the stick]

This brief overview indicates that in order to compute the placement of accents

and phrase boundaries, it is important to have information about the discourse and

about the syntactic structure of the generated sentences. In the next section, we

From Data to Speech: A General Approach 55

Fig. 2. Example Teletext Page, containing data from two football matches.
(Arbiter = referee; Toeschouwers = spectators; Geel = yellow card)

discuss in detail how the language generation module of D2S makes such information

available and how it is used for the computation of accents and phrase boundaries.

3 Description of D2S

In this section we use examples from a data-to-speech system called GoalGetter

to illustrate D2S and the techniques it is based on. As noted in the introduction,

various applications have been developed on the basis of D2S. Of these, GoalGetter

is the least complex one due to its limited domain. This makes it suitable for

use as an example, but it will also leave some aspects of D2S (in particular the

method of topic management employed in the LGM, see Section 3.1.3) somewhat

underexposed. This will be further discussed in the relevant sections below.

The GoalGetter system generates Dutch spoken summaries of football matches.

The data which form the input for GoalGetter are automatically retrieved from

Teletext, a system with which textual information is broadcast along with the tele-

vision signal and decoded in the receiver. The information is distributed over various

‘pages’, each filling a screen, which are continuously refreshed and are also available

via the Internet. Some pages contain textual information, e.g., news messages, and

some contain tables, e.g., weather reports and sports results. Figure 2 shows an

example Teletext page, which contains information about two football matches.

For each match on the Teletext page, information about the home team is shown

on the left; information about the visiting team is shown on the right. Behind each

team name, this team’s result is shown. Below it, a list is given of all players who

scored a goal for this team. The minute in which a certain player has scored is given

between brackets behind the player’s name. If the goal was not a ‘normal’ one, this

is indicated using a specific marker; for instance, /pen indicates a penalty. Then,

the name of the referee (arbiter) and the number of spectators (toeschouwers) are

given. Finally, for each team a list is given of all players who received a card. (If a

player commits a minor offence, he receives a yellow card. For a major offence, he

receives a red card and is sent off the field. Two yellow cards amount to one red

card.)

56 M. Theune, E. Klabbers, J. Odijk, J.R. de Pijper, and E. Krahmer

Output:

Go Ahead Eagles / ging op bezoek bij Fortuna Sittard // en speelde gelijk ///
Het duel eindigde in twee // - twee ///
Vijfenveertig honderd toeschouwers / kwamen naar ‘de Baandert’ ///
<new-par>

De ploeg uit Sittard / nam na zeventien minuten de leiding / door een treffer van Hamming ///
Een minuut later / bracht Schenning van Go Ahead Eagles / de teams op gelijke hoogte ///
Na achtenveertig minuten / liet de aanvaller Hamming / zijn tweede doelpunt aantekenen ///
In de vijfenzestigste minuut / bepaalde de Go Ahead Eagles speler Decheiver de eindstand / op
twee // - twee ///
<new-par>

De wedstrijd werd gefloten door scheidsrechter Uilenberg ///
Hij deelde geen rode kaarten uit ///
Marbus van Go Ahead Eagles / liep tegen een gele kaart aan ///

Translation:

Go Ahead Eagles / visited Fortuna Sittard // and drew ///
The duel ended in two // - all ///
Four thousand five hundred spectators / came to ‘de Baandert’ ///
<new-par>

The team from Sittard / took the lead after seventeen minutes / through a goal by Hamming ///
One minute later / Schenning from Go Ahead Eagles / equalised the score ///
After forty-eight minutes / the forward Hamming / had his second goal noted ///
In the sixty-fifth minute / the Go Ahead Eagles player Decheiver brought the final score to
two // - all ///
<new-par>

The match was officiated by referee Uilenberg ///
He did not issue any red cards ///
Marbus of Go Ahead Eagles / picked up a yellow card ///

Fig. 3. Example output of the LGM. Accents are indicated by small capital letters,

phrase boundaries by /, // or ///, and the start of a new paragraph by <new-par>.

An example output text, describing the first match of Figure 2, is given in Fig-

ure 3, together with its translation. The output text is given in enriched text format,

i.e., including prosodic mark-up. Accented words are printed in small capital letters,

and phrase boundaries of different strengths are indicated by a number of slashes

(/, // or ///). The marker <new-par> indicates the start of a new paragraph.

In the following subsections, we follow the general architecture of D2S as shown in

Figure 1. First, in Section 3.1 we describe the language generation module (LGM)

and illustrate its workings using an example sentence from Figure 3. Then, in

Section 3.2 we explain how the prosodic markers are assigned by the prosodic

component embedded in the LGM. Finally, in Section 3.3 we discuss how these

markers are used by the speech generation module (SGM).

3.1 Language generation in D2S

The language generation module of D2S (from now on abbreviated as LGM) was

designed for spoken information presentation in situations where the user is likely

to hear several presentations in succession. Variation in the generated presentations

is important here, and this is reflected in the architecture of the LGM, sketched

in Section 3.1.1. In particular, the LGM has no global text planner but instead

From Data to Speech: A General Approach 57

?

6 6

?

6

- -- enriched

text

domain data

PROSODY

Knowledge State

Context State

GENERATION

syntactic
templates

data

Fig. 4. The architecture of the Language Generation Module (LGM).

makes use of a set of syntactic templates with conditions on their use (discussed in

Section 3.1.2). Combined with the use of topic information to achieve coherence,

these conditions act as a kind of local, reactive planner, as discussed in Section 3.1.3.

The selection of syntactic templates and the filling of their slots is discussed in

Section 3.1.4; finally, a detailed example is given in Section 3.1.5.

3.1.1 Architecture

The general architecture of the LGM is depicted in Figure 4. The module Generation

contains the basic generation algorithm of the LGM (see Figure 9). It takes data

from outside the system as input; in GoalGetter these are data concerning the

characteristics of a particular football match. Because the Teletext pages providing

football results have a fixed format, a simple parser can be used to convert the

information they contain into the typed data structures that are used by GoalGetter

as a basis for generation. Figure 5 shows the LGM’s input data structure for the

first match of Figure 2.

In addition to the input data, the LGM also uses domain data, i.e., a collection

of relatively fixed background data on the relevant domain. In GoalGetter these

are data about the football teams and their players, such as the home town of each

team and the position and nationality of each player. These data are stored in typed

data structures for the teams and their players. An example is the feature struc-

ture containing information about the team Fortuna Sittard, shown in Figure 6.

The domain data serve as a supplement to the system’s input data from Teletext,

and are used to achieve more variation in the generated texts by providing addi-

tional information about the players and teams that are mentioned. For instance,

knowledge about the positions of the players provides the system with more pos-

sibilities for the generation of referring expressions than if only the Teletext data

were available. Examples of the use of domain data in our example text (Figure 3)

are the reference to ‘de Baandert’ (the stadium of Fortuna Sittard); the reference to

Fortuna Sittard as the team from Sittard and the second reference to Hamming as

the forward Hamming. On the basis of only the input data shown in Figure 5 (and

derived from the first half of Figure 2), ‘de Baandert’ could not have been referred

58 M. Theune, E. Klabbers, J. Odijk, J.R. de Pijper, and E. Krahmer

match

teams :

[

teampair
home team : Fortuna Sittard

visitors : Go Ahead Eagles

]

result :

[

resulttype

home team : 2
visitors : 2

]

goals :

goallist

1.

goal event

team : Fortuna Sittard
player : Hamming
minute : 17
type : normal

2.

goal event

team : Go Ahead Eagles
player : Schenning

minute : 18
type : normal

3.

goal event

team : Fortuna Sittard
player : Hamming

minute : 48
type : normal

4.

goal event
team : Go Ahead Eagles
player : Decheiver

minute : 65
type : normal

referee : Uilenberg
spectators : 4500

cards :

cardlist

1.

card event
team : Go Ahead Eagles

player : Marbus
minute : −

type : yellow

Fig. 5. Data structure representing the first match from Figure 2.

to, and both teams and players could only be referred to using their proper names.

Note that the domain data are not necessarily known to the user. They are mainly

used to provide additional information about domain objects, not to identify them.

The module Generation additionally uses a collection of syntactic templates to

express (parts of) the input data. Syntactic templates contain syntactic tree struc-

tures with open slots for variable information. The syntactic information from the

templates3 is used for prosody computation (see Section 3.2), and for checking

3 Please note that in the remainder of this paper, the word ‘templates’ is used to refer to
syntactic templates of the kind used in the LGM, not the simple templates discussed
in Section 2.1.

From Data to Speech: A General Approach 59

team

name : Fortuna Sittard
hometown : Sittard
stadium : de Baandert

trainer : Verbeek

players :

playerlist

1.

player

first name : Ronald
last name : Hamming

nationality : Dutch
position : forward

2. . . .

Fig. 6. Background data structure for the team Fortuna Sittard.

certain grammatical conditions (see Section 3.1.4). Each syntactic template has a

(complex) condition on its use, and the interplay between these conditions during

generation determines the structure of the generated text. The form and content of

the syntactic templates and their use in generation are discussed in detail below.

During generation, two records are kept. One of them is the Knowledge State. It

records which parts of the input data structure have been expressed by the system

(these are assumed to be known to the user) and which parts have not (these are

assumed to be unknown). The Knowledge State takes the form of a labelling on

all fields in the input data structure, indicating whether their values are known

to the user. Initially, all fields in the input data structure are labelled ‘unknown’.

After generation of a sentence that expresses one or more fields of the input data

structure, these fields are labelled as ‘known’. The Knowledge State information is

used to guide the selection of templates by the Generation module.

In addition to the Knowledge State, there is another record which is kept dur-

ing generation: the Context State, which records various aspects of the linguistic

context (i.e., the part of the text that has so far been generated). A central part

of the Context State is the Discourse Model, which keeps track of the discourse

objects that have been mentioned. The information in the Context State is used,

among others, during the generation of referring expressions and the computation

of prosody. For a detailed discussion of the modelling and use of contextual in-

formation in the LGM, see van Deemter and Odijk (1997). Finally, the Prosody

component computes the prosodic features of each generated sentence.

3.1.2 Syntactic templates

One of the main characteristics of the LGM is the usage of syntactic templates.

Each template can be used to express one or more parts of the system’s input data

structure. Figure 7 contains an example from GoalGetter, which has been used to

generate the sixth sentence from the example text in Figure 3. Formally, a syntactic

template σ is a quadruple 〈S, E, C, T 〉, where S is a syntactic tree (typically for a

sentence) with open slots in it, E is a set of links to additional syntactic structures

which may be substituted in the gaps of S, C is a (possibly complex) condition on

60 M. Theune, E. Klabbers, J. Odijk, J.R. de Pijper, and E. Krahmer

��������� �
	�������
	����
��� ���

� �
� � �

��
���

���
�! �"$#
�&%

� �
� � �

��
����&'

() *�+
,.- /1032�4 5

6 �

� �
� �

��
��

�87:9<;�=$"?>?# @
�

� �
� �

� � �

��
��

���

A �

� �
� �

�
��

��
�

��7:9<;�=$"�> B$"�CD# A %

� �
�

��
�

�8EF>HG:�!C:;19I# A '
2�J *
(K1L1M3+
,�- N�J30 (4 5

@
'

0�0 M3+�*�OP*�M�*�M
,.- M J +�* 2�4 5

Q � ���! �"SRUT3V ��W ��X�XY�[Z �\� ,Y]�^�_`_ba�c$d e?f�gPh i jlk cF^1dma`5
7:9<;3=F"�>nRUT3V ��W ��X�X�o\p�qI�
r`	 ,`]`^�_`_Ya`c$d e?f
g�h i sth gPu�a�_Yv[ctfHjw5
7:9<;3=F"�> B$"�CxRyT�V �PW ��X�X`op.qI�
r�	 ,Y]�^�_`_ba�c$d e?f�gPh i s�h gHu3a`_YvDe?a�c15
E$>HG:�!Cz;19&RyT�V ��W ��X�X`oW {�Z �P��� ,YfP_b|Hk ctgPh c1^1jn}ba`_Y5

~����������� ,�j�g�dm]`��i dIaYgHj���5[�
]�^�_`_ba�c$d e?f�gPh ���?Z W X�	 ,�^�c1�HctfH�Dc1vDj�gPdI]`��i e3f�gPh �P58�
� �?��� XY��r
�?W ��{ ,`]`^�_`_Ya`c$d e?f
g�h i sth gPu�a�_35 #�� �
]�^�_`_ba�c$d e?f�gPh i d!ubsFaS�� fH��c?e?f�gPh

� � - N303� * � J L1�b�b* 4

Fig. 7. Syntactic template used for the generation of the sixth sentence of Figure 3, Na
achtenveertig minuten liet de aanvaller Hamming zijn tweede doelpunt aantekenen (‘After
forty-eight minutes the forward Hamming had his second goal noted’). (CP = Comple-
mentiser Phrase, IP = Inflectional Phrase)

the applicability of σ and a T is a set of topics. Let us discuss the four components

of the syntactic templates in some more detail, beginning with the syntactic tree S.

The syntactic tree structures in the templates bear a certain resemblance to the

initial trees of Tree Adjoining Grammar (TAG, Joshi 1987): all interior nodes of

the tree are labelled by non-terminal symbols, while the nodes on the frontier are

labelled either by terminal or non-terminal symbols, where the non-terminal nodes

on the frontier are the gaps which are open for substitution. A notable difference

with TAG trees is that the latter are generally ‘minimal’, i.e., only the head of

the construction is lexicalised and the gaps coincide with the arguments of the

head, whereas the syntactic trees in the templates may contain more words, often

in order to express collocations (groups of words with a frozen meaning). Examples

of collocations occurring in the GoalGetter templates are een doelpunt laten aan-

tekenen (‘have a goal noted’) (as in Template Sent16) or de leiding nemen (‘take

the lead’). (See Klabbers, Krahmer and Theune 1998 for some further discussion.)

From Data to Speech: A General Approach 61

The syntactic trees in the templates are given in full detail because during prosody

computation (see Section 3.2) they need to be converted into full metrical trees.

The second element of a syntactic template is E: the slot fillers. Each open slot in

the tree S is associated with a call of a so-called Express function, which generates

the set of possible slot fillers for the given gap.

The third ingredient is C: the condition. A template σ is applicable if and only

if its associated condition is true. Two kinds of conditions can be distinguished:

(i) conditions on the Knowledge State and (ii) linguistic conditions. Conditions

of the former type state things like ‘X should not be conveyed to the user before

Y is conveyed’. The first two (sub)conditions of Template Sent16 are of this kind.

They state that the template can only be used if the teams involved in the match

have been conveyed to the user (i.e., are known) and the current goal is the first

one which has not been conveyed (is unknown). The first condition has to do with

the desired global discourse structure: in GoalGetter, we have chosen the strategy

of presenting general information first, and then giving further details, so we want

the competing teams to be known to the user before describing who scored when.

Therefore, the first condition checks if the teams field of the input match has been

labelled ‘known’. The second condition ensures that the template only expresses

goals which have not been previously described: the function First takes the first

goal event from the goals list that is labelled ‘unknown’. If there is no such goal

(i.e., all goals have been described), the template is not applicable.

‘Linguistic’ conditions are related to the semantics/pragmatics of the sentence

that can be generated from the template, and pose restrictions on the kind of input

data to which the template can be applied. The two final conditions on Template

Sent16 are of this type. The first of the two says that Sent16 is only applicable if the

player of the current goal has scored more than once during the match. Because a

sentence of the form X had his first goal noted creates the impression that player X

has scored more than one goal, we do not want such a sentence to be used if X has

actually scored only once. The final condition on Template Sent16 states that this

template cannot be used if the current goal is an own goal. This restriction is added

because using the phrase having a goal noted to describe an own goal would give

rise to a false conversational implicature (Grice 1975) by creating the impression

that the current goal is a normal goal when, in fact, it is not.

Finally, each template σ contains a set of one or more topics T . These are labels

which globally describe what the syntactic template is about. The LGM algorithm

uses the topic information to group sentences together into coherent chunks of text.

Each topic has several templates associated with it, and each template is associated

with one or more topics. This situation can be illustrated using the simple Venn

diagram in Figure 8, which represents the topics and templates of the GoalGetter

system. In GoalGetter, which is a relatively small system, there are only three top-

ics: (i) ‘general’ (giving global information about, for instance, the names of the

opposing teams and the final result of the match), (ii) ‘game course’ (giving infor-

mation about events which occurred at a specific time during the match) and (iii)

‘game statistics’ (giving details of the match that are not necessarily associated

with a specific time, e.g., bookings of specific players). The GoalGetter system cur-

62 M. Theune, E. Klabbers, J. Odijk, J.R. de Pijper, and E. Krahmer

rently contains approximately thirty syntactic templates, not all of which are shown

in Figure 8. Some of these templates belong to more than one topic; for instance,

information about red cards (which cause a player to be sent off the field during

the game) can either be expressed as part of the ‘game course’ or as part of the

‘game statistics’. Similarly, information about the number of spectators of a match

may be seen as part of either the ‘general’ information or the ‘game statistics’.

Not all of GoalGetter’s templates are used in each text; for instance, if no own

goals occurred in the match to be described, the templates that express the scor-

ing of an own goal are not used. In addition, each piece of information from the

input data structure can typically be expressed using more than one template. For

instance, in GoalGetter there are four different templates available to convey infor-

mation about the referee of a match. The selection of templates and the form of

‘planning’ used in the LGM are discussed immediately below.

3.1.3 Topics, conditions and coherence

Given that we have a set of syntactic templates, which we can use to create sentences

expressing parts of the input data, we need a method for combining these sentences

into a coherent output text. Various approaches are possible here. For instance, we

could write an explicit grammar which states where every sentence can occur. A

different approach would be to make use of a form of text planning where, before

linguistic realisation, the pieces of information to be conveyed are grouped in such a

way that a coherent text results. In the LGM we take a different approach, starting

as it were from the other side: instead of explicitly specifying in advance where in

the output each sentence should occur, we assume that in principle each sentence

can occur anywhere, but that conditions prohibit their use in some cases. With this

approach, we try to achieve maximal variation in the output texts. Variation is of

high importance, because we expect the users of typical D2S applications to listen

to several texts in succession. If these texts do not show sufficient variation, this

will presumably be slightly boring (Odijk 1995).4

So, we wish to generate texts that are both varied and coherent. We assume that

there are two main factors determining the coherence of a text: (i) the information

must be presented in a natural order, and (ii) the information must be presented in

natural groupings. To ensure a natural grouping of the sentences in the output of the

LGM, the topics associated with the templates are used. Each topic corresponds

to a paragraph in the generated text, which contains only sentences that have

been generated from templates belonging to that specific topic. In the GoalGetter

example in Figure 3, the first paragraph corresponds to the ‘general’ topic, the

second paragraph is about the ‘game course’ and the third about ‘game statistics’.

The ordering of the paragraphs in a text and of the sentences within a paragraph

is determined by the conditions on the templates. A template can be used if it

belongs to the topic of the current paragraph, and if its conditions evaluate to true

4 We conjecture that the pleasure derived from variation is proportional with the length
of the generated text, and with the number of similar texts to be read or listened to.

From Data to Speech: A General Approach 63

Sent2

Sent1
Sent9

Sent5a

‘GENERAL’
‘GAME_COURSE’

Sent3

Sent5

Sent6 Sent13

Sent16

Sent7

Sent11

Sent4

Sent15

Sent14

Sent8

Sent12

Sent10

‘GAME_STATISTICS’

Fig. 8. Topics and templates.

given the current Knowledge State. If more than one template is applicable in the

current state of the generation process (and this will often be the case), one is

chosen arbitrarily. After a sentence has been generated from the chosen template,

the Knowledge State is updated and new templates become applicable. If there

are no more applicable templates within the current topic, a new topic must be

chosen. There is no a priori ordering on the topics; whether a new paragraph can

be started given a topic T depends on the applicability of the templates within that

topic. If there are no templates associated with T whose conditions evaluate to true

in the current Knowledge State, T must be skipped until the Knowledge State has

been sufficiently changed for some of its templates to be applicable. Below, we will

discuss the generation algorithm in detail and illustrate it using some examples.

One might argue that the conditions on the templates act as a distributive, reac-

tive planner, in the sense that the conditions are spread across the templates and

respond to the current stage of the generation process. This ‘local condition’ ap-

proach makes it possible to formulate certain general principles on the presentation

of information (e.g., that global information is presented first) without having to

specify exactly at which point in the output text each piece of information should

be conveyed. This enables the system to achieve a high degree of variation in the

generated texts, which is assumed to be pleasant for the hearer.

The GoalGetter system is not a typical D2S application in the sense that it

does not fully exploit the possibilities for variation offered by the LGM’s planning

mechanism. The limited variation in the output of GoalGetter is a consequence of

the relatively small amount of available data, in combination with the structured

nature of a football report (most notably the chronological description of the course

of the game). However, other D2S systems have a higher number of topics and

templates and a less strict ordering among the topics, thus allowing for much more

variation. For instance, the DYD system (van Deemter et al. 1994; Odijk 1995; van

Deemter and Odijk 1997) has nine topics which each discuss a different aspect of

a Mozart composition, and may occur in virtually any order, thus reflecting the

associative process of describing a composition. In general, we can say that some

types of output text (e.g., descriptions) offer more opportunities for variation than

64 M. Theune, E. Klabbers, J. Odijk, J.R. de Pijper, and E. Krahmer

others (e.g., football reports). For each application, the desired amount of variation

can be achieved by making the conditions on the templates either very global or

very strict. Some other templates and their conditions are shown in Section 3.1.5.

For a more detailed discussion of ‘local planning’ in the LGM, see Odijk (1995).

3.1.4 Algorithm

The LGM generation algorithm is shown in Figure 9. Its input is formed by the set

of topics (all topics), the set of all syntactic templates (all templates), the initial

Knowledge State (InitialKS) and the initial Context State (InitialCS). In the initial

Knowledge State it is recorded that all parts of the input data structure are marked

as ‘unknown’, and the initial Context State is simply empty (no discourse entities

have been introduced yet). The algorithm starts by initialising two variables, rele-

vant topics and untried topics. The first variable, relevant topics, contains the set

of topics that have not yet been used as the basis for a paragraph (none of their

templates has been applied yet). The second variable, untried topics, contains the

set of topics which the algorithm has not yet tried to use in its current generation

round. Both variables are initialised as the set of all topics. Finally, the variables

KS and CS are initialised to InitialKS and InitialCS respectively.

After initialisation the algorithm gets into its first while loop, walking through

the set of untried topics. As long as this set is not empty, the algorithm performs the

following actions. It starts by randomly picking one of the untried topics and makes

it the current topic. Using this topic, it will try to start a new paragraph. First,

the variable possible templates is instantiated as the set of those templates that

are associated with the current topic and whose conditions evaluate to true in the

current Knowledge State. These are the templates that are currently applicable. (It

may be that at this point, none of the templates associated with the current topic

are applicable yet; in that case, possible templates is empty.) Then the variable

topic successful is set to false; this variable records if any template associated with

the current topic has been applied successfully (i.e., has produced a sentence). If

possible templates is not empty, the second while loop is entered. In this loop,

the algorithm goes through the set of possible templates, picking one of them at

random (chosen template) and trying to apply it by giving it as an argument to the

function ApplyTemplate, which is discussed in detail below. If ApplyTemplate is not

successful, it outputs nil. In that case, the algorithm removes the chosen template

from the set of possible templates, picks another template from this set and tries to

apply it. If the sentence produced by ApplyTemplate is not nil, the algorithm orders

the Speech Generation Module to pronounce it. The Knowledge State is updated

so that the data expressed by means of chosen template are marked as ‘known’,

and the Context State is updated by (among other things) adding the discourse

entities mentioned in the chosen template to the Discourse Model. Topic successful

is then set to true, since one of the templates from the current topic has been

applied successfully. Now, the set of possible templates is re-instantiated given the

updated Knowledge State. (Because the Knowledge State has changed by applying

a template, new templates may have become applicable and others unapplicable.)

From Data to Speech: A General Approach 65

Generate(all topics, all templates, InitialKS, InitialCS)

relevant topics ← all topics
untried topics ← all topics
KS ← InitialKS

CS ← InitialCS

while untried topics 6= {}
do current topic ← PickAny(untried topics)

possible templates ← { t ∈ all templates | current topic ∈ Topic(t) ∧
Conditions(t, KS) = true }

topic successful ← false

while possible templates 6= {}
do chosen template ← PickAny(possible templates)

sentence ← ApplyTemplate(chosen template, CS)
if sentence = nil

then possible templates ← possible templates − chosen template
else Pronounce(sentence)

KS ← UpdateKS(KS, chosen template)
CS ← UpdateCS(CS, chosen template)
topic successful ← true

possible templates ← { t ∈ all templates | current topic ∈ Topic(t) ∧
Conditions(t, KS) = true }

endif

endwhile

if topic successful = false

then untried topics ← untried topics − current topic
else relevant topics ← relevant topics − current topic

untried topics ← relevant topics
StartNewParagraph

endif

endwhile

Fig. 9. The basic generation algorithm of the LGM.

From the new set of possible templates, one template is picked and the procedure

starts all over again. This continues until there are no applicable templates left

within the current topic. The algorithm then leaves the second while loop and

checks if the current topic has been successful. If not, it means that nothing has

happened; no sentences have been generated. In that case, current topic is removed

from the set of untried topics. The set of relevant topics does not change, so that

the current topic may be tried again later. The algorithm now picks a new topic

from the remaining untried topics, and tries to start a paragraph with that topic.

If topic successful is true, this indicates that a paragraph of one or more sen-

tences has been generated, so the algorithm now has to start a new paragraph. The

current topic is removed from the relevant topics, and the set of untried topics is

instantiated as the set of all relevant topics. This means that all topics that were

unsuccessful in a previous Knowledge State, can now be tried again as the basis

for the new paragraph. The algorithm picks a new topic and continues until there

are no untried topics left. This concludes the discussion of the main generation

algorithm; we now turn to the function ApplyTemplate, shown in Figure 10.

ApplyTemplate attempts to generate a sentence from a template, given the current

66 M. Theune, E. Klabbers, J. Odijk, J.R. de Pijper, and E. Krahmer

ApplyTemplate(template, CS)

allowed trees ← {}
sentence ← nil

all trees ← FillSlots(template, CS)
for each member ti of all trees do

if Violate BT(ti) = false

then allowed trees ← allowed trees + ti

endif

if allowed trees 6= {}
then chosen tree ← PickAny(allowed trees)

final tree ← AddProsody(chosen tree, CS)
sentence ← Fringe(final tree)

endif

return sentence

Fig. 10. The function ApplyTemplate.

Context State. This is done by creating a set of all sentences that result from all

relevant slot fillings of the template, and then filtering out those sentences that

violate the Binding Theory (Chomsky 1981). From the remaining sentences, one is

picked at random. More specifically, ApplyTemplate works as follows. First, it calls

the function FillSlots(template, CS) to obtain the set of all possible trees that can be

generated from the template, using all possible combinations of slot fillers generated

by the Express functions associated with the slots in the templates. Typically, there

are several possible slot fillings for each slot in a template. For instance, a person

may be referred to using a proper name, a definite description or a pronoun (if

the Discourse Model, which is part of the Context State, contains an appropriate

antecedent).5 As a consequence, FillSlots typically returns a set of several trees, all

expressing the same piece(s) of information albeit in different ways. For each tree

in this set it is checked whether it obeys the Binding Theory, for instance to see if

there are any non-pronouns in a bound position (Chomsky 1981); see the example

below). The trees that are not in line with Binding Theory are filtered out, and

the system arbitrarily selects one of the remaining trees. This tree is sent to the

Prosody module, where its prosodic properties are computed using both syntactic

and contextual information. (This is described in Section 3.2). ApplyTemplate then

returns the sentence consisting of the tree’s terminal nodes plus their prosodic

markings (i.e., the ‘fringe’ of the tree).

As with the random choice of topics and templates, the making of an arbitrary

choice from the suitable trees is motivated by the need for variation within and

between the generated texts. We are aware that this strategy still leaves room for

improvement, for instance, because making a random choice is not a guarantee for

optimal variation. Finally, note that the ‘generate and test’ strategy employed at

several stages of the generation process does not lead to inefficiency, because the

5 Definite descriptions and pronouns are generated using a modified and extended version
of Dale and Reiter’s (1995) MakeReferringExpression algorithm for the generation of
referring expressions. For details, see Krahmer and Theune 1999 and Theune 2000.

From Data to Speech: A General Approach 67

LGM is written in a programming language that uses lazy evaluation: expressions

are only evaluated when necessary.

3.1.5 Example

We now illustrate the workings of the generation algorithm using (parts of) the

text in Figure 3 as an example. For ease of exposition, throughout this section we

only refer to the English translation of the output generated by GoalGetter.

After initialisation of relevant topics and untried topics as the set {‘game course’,

‘game statistics’, ‘general’}, and initialisation of the Knowledge State, the algorithm

starts by randomly picking a topic from untried topics. Let us assume the selected

topic is ‘game course’. Now topic successful is set to false (no sentence for this topic

has been uttered) and the set possible templates is constructed of all templates

which are associated with ‘game course’ and whose conditions are true given the

current Knowledge State, which says that all parts of the input data structure are

still unknown to the user. In this case, it turns out that the set of possible templates

is empty: there are no ‘game course’ templates which are applicable in the initial

Knowledge State, when no information about the match has been conveyed yet.

This is because all templates in ‘game course’ have as their condition that they

can only be used if the competing teams are known to the user: before providing

details about which player did what during the match, the teams should have been

introduced. Because there are no applicable templates, the ‘game course’ topic can

not be used for the first paragraph. This means that the attempt with this topic has

finished without being successful, so after having removed ‘game course’ from the

untried topics the algorithm starts a new generation round. Although ‘game course’

remains a relevant topic (nothing has been said about it yet), this time the algorithm

can only choose from the two topics which have not yet been tried, ‘general’ and

‘game statistics’. We assume that now the ‘general’ topic is picked.

For explanatory purposes, let us assume that this topic only contains the three

templates that have been used to generate the first three sentences of the text in

Figure 3. (This is a severe simplification.) These templates are shown in an abbre-

viated form in Figure 11; we call them Sent1, Sent2 and Sent3 respectively. Instead

of showing the full syntactic trees of the templates, only the ‘flat’ sentences with

the slots are shown (in translation); in addition, we left out the topic information

and the calls of the Express functions, and slightly simplified the conditions.

For the ‘general’ topic, in the initial Knowledge State the set of possible templates

is not empty: it contains both Sent1 and Sent2, which do not require any information

to be known before being applied. One of the two templates is chosen at random;

this happens to Sent1. This template can be successfully applied by filling the

<team1> slot with the name of the visiting team and the <team2> slot with the

name of the home team. (The ApplyTemplate function will be illustrated in more

detail below.) After the template has been applied, the resulting sentence (the

first sentence of Figure 3) is pronounced by the SGM, and the Knowledge State is

updated with the information that the teams field of the match is now known to the

user. The Context State is updated as well, among other things by extending the

68 M. Theune, E. Klabbers, J. Odijk, J.R. de Pijper, and E. Krahmer

Template Sent1

S = <team1> visited <team2> and drew.
C = Unknown (match.teams) ∧

match.result.home team = match.result.visitors

Template Sent2

S = <match> ended in <result>.
C = Unknown (match.result)

Template Sent3

S = <spectators> visited <stadium>.
C = Unknown (match.spectators) ∧

Known (match.teams)

Fig. 11. Abbreviated templates from the ‘general’ topic. The syntactic structures, the
topics, and the calls of the Express functions, used to fill the gaps, are omitted.

Discourse Model with discourse entities corresponding to the teams and the game.

Then topic successful is instantiated as true (the first sentence of a paragraph has

been generated) and the set of possible templates is computed anew, given the

updated Knowledge State. Because the competing teams are now known, Sent1

can no longer be used. Sent2 is still applicable because the result of the match has

not been explicitly conveyed. In addition, Sent3 has now become applicable because

the teams are known. Therefore, possible templates = {Sent2, Sent3}. Now assume

that Sent2 is chosen to be applied. Its first slot is filled with an expression for the

match. In this case, the definite description the duel is used, which is generated

using the function ExpressObject, discussed below. The second slot of the template

is filled with a tree expressing the result of the match. After application of this

template, the result of the match is marked as known. This means that Sent2 is

no longer applicable; the only template left is Sent3. After this template has been

applied successfully (using the domain information that the stadium of Fortuna

Sittard is called ‘de Baandert’), no more applicable templates are left within the

topic, so the paragraph is finished. ‘General’ is removed from the relevant topics,

and the untried topics are instantiated as the relevant topics, i.e., {‘game course’,

‘game statistics’}. The algorithm now starts a new paragraph, which we will use to

illustrate the working of ApplyTemplate and the Express functions.

For the new paragraph, the algorithm now picks ‘game course’ from the un-

tried topics. Because the result of the match has been conveyed in the previous

paragraph, this time there are several templates that can be applied given the cur-

rent Knowledge State. One of them is picked at random and used to generate the

fourth sentence of Figure 3: The team from Sittard took the lead after seventeen

minutes through a goal by Hamming. Consequently, the Knowledge State is up-

dated to reflect the fact that information about the first goal has been conveyed.

From Data to Speech: A General Approach 69

In addition, the Discourse Model is extended with entities corresponding to the

phrases the team from Sittard, Hamming and after seventeen minutes. They receive

an index indicating to which parts of the data structure they refer. Now the sys-

tem goes on and attempts to convey the second goal scoring event. It cannot use

the same template as the one used for the fourth sentence, since the second goal

scoring event of the current match does not make one team take the lead. Instead,

a template is used that is applicable if the scores of two teams are equalised: One

minute later Schenning from Go Ahead Eagles equalised the score. A noteworthy

aspect of this sentence is the time expression that is used, viz. the expression <N>

minute/minutes later. This expression can only be used if the Discourse Model con-

tains an appropriate reference time, i.e., if the most recent time expression in the

Discourse Model is an explicit one. The variable <N> is then a cardinal expression

for an integer which equals the time value of the current event minus the time value

of its reference time. Since the current Discourse Model contains an appropriate ref-

erence time entry, viz. the expression after seventeen minutes, the expression one

minute later can be used here.

Now a sentence must be generated to describe the third goal of the match. To do

this, Template Sent16 (shown in Figure 7) is selected. As the reader can verify, all

conditions associated with this template are met. After having selected Sent16, the

system attempts to generate a sentence from it using the function ApplyTemplate

from Figure 10 which will now be illustrated in some detail. ApplyTemplate first

calls FillSlots to obtain the set of all possible trees that can be generated from the

template, using all possible combinations of slot fillers generated by the associated

Express functions. Let us start with the first slot, <time>. The function ExpressTime

can generate several time expressions, but one of them is not allowed given the cur-

rent context: since the most recent time expression in the Discourse Model (one

minute later) is not explicit, it cannot serve as a reference time for a second expres-

sion of the form ‘<N> minute/minutes later’. Such an expression is therefore not

allowed here, and ExpressTime only returns two possible slot fillings: the explicit

time expressions in the forty-eighth minute and after forty-eight minutes (which we

take to be synonymous, although strictly spoken this is not true).

The second slot to be filled is the <player> slot. The function ExpressObject is

called to generate an expression (in the nominative case) for the player who scored

the third goal (Hamming). Again there are several options: a player can be described

using a definite description (expressing the player’s position or nationality attribute,

or both; see Figure 6) a pronoun, a proper name, or an appositive that combines

a definite description and a proper name. However, as before, not all options are

appropriate given the current context. Let us first consider the first two options:

pronoun and definite description. Depending on the context, the MakeReferringEx-

pression algorithm that is called in ExpressObject generates either a pronoun (if there

is an appropriate antecedent in the Discourse Model) or a definite description. In

the current example, a pronoun cannot be used: the antecedent (Hamming in sen-

tence four) is not accessible due to the intervening reference to the player Schenning.

Neither can a definite description be generated: referring to Hamming’s nationality

(Dutch), does not distinguish him from Schenning, who is also Dutch, and although

70 M. Theune, E. Klabbers, J. Odijk, J.R. de Pijper, and E. Krahmer

<time> {in the forty-eighth minute, after forty-eight minutes}
<player> {Hamming, the forward Hamming}
<player gen> {his, Hamming’s, the forward Hamming’s}
<ordinal> {second}

Fig. 12. Possible slot fillings for Template Sent16.

Hamming’s position (forward) does in fact distinguish him from Schenning (who

happens to be a midfielder) we assume that the hearer is unaware of this. This

means that describing Hamming as either the Dutchman, the forward or even the

Dutch forward is insufficiently distinguishing. In contrast, the third option of using

a proper name is always allowed (i.e., if there is a name available): disregarding

stylistic considerations, a proper name can in principle be used in any context.

The proper name Hamming therefore constitutes a possible slot filling. The fourth

option, combining a definite description and a proper name to form an appositive,

is also always available: the proper name distinguishes the described entity from

other entities, and the definite description provides additional information about

this entity. In our example, the appositive the forward Hamming is generated as

a candidate description: since the property of being Dutch is not very interesting,

being the default, only the position information is included in the description. In

sum, the function ExpressObject returns two possible slot fillings for the <player>

slot: the proper name Hamming and the appositive the forward Hamming.

We now turn to the third slot, <player gen>. This slot must be filled with an

expression for Hamming in the genitive case. Because there is an antecedent for

this slot in the same sentence (i.e., the expression in the <player> slot), the Mak-

eReferringExpression returns the genitive pronoun his. In addition, a proper name

and an appositive are available, so for this slot ExpressObject returns a set of trees

for his, Hamming’s and the forward Hamming’s.

Finally, the formation of the filler for the <ordinal> slot, expressing the number

of goals the current player has scored so far, requires a bit of computation (not

indicated in Figure 7). This computation yields a positive integer (in the current

example, 2), which must then be expressed by its corresponding ordinal (second).

Combining all different slot fillings (shown in Figure 12), the function FillSlots

returns a set of 2 × 2 × 3 × 1 = 12 trees that can be generated from Template

Sent16 in the current context. For each tree in this set, it is checked whether it

obeys the Binding Theory (Chomsky 1981). This test filters out the trees where

either the proper name Hamming’s or the appositive the forward Hamming’s occu-

pies the <playergen> slot, because these expressions (‘R-expressions’ in the Binding

Theory) are not free in this position, thus violating Principle C of the Binding The-

ory. The set of allowed trees therefore contains trees for the following four sentences:

After forty-eight minutes Hamming had his second goal noted,
After forty-eight minutes the forward Hamming had his second goal noted,
In the forty-eighth minute Hamming had his second goal noted,
In the forty-eighth minute the forward Hamming had his second goal noted

From Data to Speech: A General Approach 71

From these remaining trees, one is selected arbitrarily (in this case the second

one), and sent to the Prosody module, where its prosodic properties are computed

as described in the next section. The fringe of the resulting tree (i.e., the sen-

tence enriched with prosodic markers) is returned to the main algorithm, where

the sentence is sent to the SGM to be pronounced, and the Knowledge State and

the Context State (including the Discourse Model) are updated accordingly. Here

we leave our illustration of the language generation algorithm, and continue by

discussing prosody computation in D2S.

3.2 Prosody computation in D2S

In this section, we show how the Prosody module determines the location of accents

and phrase boundaries in a generated sentence on the basis of both syntactic and

semantic information (see Section 2.3). We use our earlier example sentence Na

achtenveertig minuten liet de aanvaller Hamming zijn tweede doelpunt aantekenen

(‘After forty-eight minutes the forward Hamming had his second goal noted’) as an

illustration. The prosodic rules described in this section are independent of domain

and language, within the class of Germanic languages (e.g., English, Dutch, and

German). The same set of rules has been used for prosody computation in both

GoalGetter and the DYD-system, which differ with respect to language (Dutch

versus English) and domain (football versus Mozart).

3.2.1 Overview

Since accentuation is relevant for the placement of phrase boundaries, but not

vice versa, the Prosody module starts with computing the accentuation pattern

of each sentence, using an algorithm that is based on a version of Focus-Accent

Theory (Baart 1987) proposed by Dirksen (1992) and Dirksen and Quené (1993).

In Focus-Accent Theory, binary branching metrical trees are used to represent the

semantic and syntactic prominence of nodes with respect to pitch accent. In our

implementation, the metrical tree of a sentence is based on the sentence’s syntactic

tree.6 It is constructed by converting the syntactic tree to a tree that is at most

binary-branching and marking its nodes with focus markers and weak or strong

6 Note that having such a direct link between ”traditional syntactic structure” and into-
national structure is somewhat controversial. Steedman (1990, 1996) and others have
pointed out that prosodic structure does not always adhere to the traditional subject -
predicate division of a sentence. An example from Steedman (1996) is the following:

(3) Q: Well, what about Mary? What does she admire?
A: Mary admires / musicals

(The placement of accents and phrase boundaries in this example is Steedman’s; the
notation is our own.) The prosody module of the LGM would not generate a phrase
boundary in the above example (but it would generate the same accentuation pattern).

72 M. Theune, E. Klabbers, J. Odijk, J.R. de Pijper, and E. Krahmer

labels. The focus markers indicate information status. Words and phrases that

express new or contrastive information are considered to be in focus, whereas words

and phrases that express ‘given’ information are considered to be out of focus. The

weak/strong (w/s) labels in the tree represent the structural prominence of the

nodes with respect to accentuation. In other words, the focus marking indicates

which words and phrases should or should not receive an accent, while the w/s

labelling determines where in each constituent an accent may land. The first is a

matter of discourse semantics, while the second is a matter of syntax.

3.2.2 Focus and information status

The focus properties of the nodes in the metrical tree are determined as follows.

First, the Prosody module adds an initial, preliminary focus marking to the tree.

In this initial state, all major constituents (i.e., all maximal projections of the from

XP) are, by default, assumed to be in focus and are marked [+F]. The other nodes

are initially not specified for focus. After the initial, default assignment of focus

markers has taken place, the system tries to determine the information status of

the words or phrases in the tree.

First of all, it tries to determine which words and phrases are contrastive. The

method used to determine contrast of information is described in Theune (1997a,

1997b, 2000). It is based on a comparison of the data structure expressed by the

current sentence with the data structure expressed by its predecessor. It is checked

if the two data structures are of the same type (e.g., two goal events), and if so,

which of their attributes have different values. The words and phrases of the current

sentence that express those differing values are marked as being in focus due to

contrast. An important advantage of using data structures as the basis for assigning

contrastive accents within the LGM is that it allows for the detection of contrast

in cases where there is no syntactic or semantic parallelism between sentences.

We can illustrate this using our earlier example sentence, the sixth sentence from

Figure 3. Figure 13 shows the goal events expressed by this example sentence and

the preceding sentence. These are the second and third goals of the example match

(see Figure 5).

As can be seen in Figure 13, except for the type attribute all attributes of the

goal event expressed by the example sentence have different values from that of

the preceding sentence. This means that the phrases in the example sentence that

express the values of those attributes should receive contrastive accent. These are

the AP achtenveertig (‘forty-eight’, expressing the value of the minute attribute)

and the NP de aanvaller Hamming (‘the forward Hamming’, expressing the value

of the player attribute). These phrases are marked [+C] to indicate that they are in

focus due to contrast. If a constituent expresses contrastive information, its focus

marking cannot be changed, even if it might be regarded as given. Examples like (1)

in Section 2.3 show that contrast overrides givenness. Even ‘unaccentable’ words

like determiners may receive an accent if they are used contrastively.

Next, the system determines which words or phrases in the tree express given

information, and which words are ‘unaccentable’ (e.g., certain function words). On

From Data to Speech: A General Approach 73

goal event

team : Go Ahead Eagles
player : Schenning
minute : 18
goaltype : normal

Een minuut later bracht Schenning van Go Ahead Eagles de teams op gelijke hoogte.

(‘One minute later, Schenning from Go Ahead Eagles equalised the teams.’)

goal event
team : Fortuna Sittard
player : Hamming

minute : 48
goaltype : normal

Na achtenveertig minuten liet de aanvaller Hamming zijn tweede doelpunt aantekenen.
(‘After forty-eight minutes, the forward Hamming had his second goal noted.’)

Fig. 13. Data structures expressed by the example sentence and its predecessor.

the basis of this information, the initial placement of focus markers in the tree may

be altered (except for the [+C] markers). The focus value of a node is changed to

[-F] in three cases: (i) if the node directly dominates a word or phrase expressing

given information, (ii) if it directly dominates an ‘unaccentable’ word and (iii) if

all the nodes it dominates are marked [-F].

Information from the LGM’s Context State is used to determine whether a word

or phrase expresses given information. The rules for determining givenness are based

on the theory proposed by van Deemter (1994), who, like Chafe (1976), distinguishes

object-givenness and concept-givenness. A word or phrase is object-given if it refers

to a discourse entity (e.g., a player) that has already been mentioned, and it is

concept-given if it expresses a concept (e.g., ‘scoring a goal’) which has already been

evoked earlier in the discourse. In D2S, the Discourse Model can be used to check

object-givenness, because it records which entities have so far been referred to by the

system. In our example sentence, the NP’s de aanvaller Hamming (‘the forward’)

and zijn (‘his’) are object-given, because their referent, the player Hamming, was

referred to two sentences earlier (see Figure 3). The focus marking of the second

NP (zijn) is therefore changed to [-F], but the marking of the first NP does not

change because it is marked as contrastive.

Concept-givenness is determined by checking if words or phrases are synonymous

or identical to words or phrases that were used earlier in the text, or if the concept

they express subsumes another concept that was expressed earlier. Currently, this

is checked using an application-specific list of synonymous and subsuming words

and phrases. An example of concept-givenness through subsumption can be found

in the seventh sentence of the example text in Figure 3: the concept ‘player’, which

is referred to in the appositive NP de Go Ahead Eagles speler Decheiver (‘the

Go Ahead Eagles player Decheiver’), subsumes the concept ‘forward’ mentioned

in the preceding sentence, and is therefore regarded as given. (Since a forward is a

player, we assume that mentioning the concept ‘forward’ automatically activates the

subsuming concept ‘player’.) In our system, subsumption is currently determined

using a small hand-crafted subsumption hierarchy, which is application-specific. In

addition, application-specific lists of synonyms are used, recording for instance that

74 M. Theune, E. Klabbers, J. Odijk, J.R. de Pijper, and E. Krahmer

����� �����
	

� � � �
� � � �

� � � �
� � � �

� � ��

����
����

����
����

����

���� �������

� � � �
� � � �

� �

����
����

��

���� �������
���

��� ��� ���! !" #

$ ��� �����
	

� � � �
� � �

����
���

%&��� �(')��	
*+�,.-0/21034/2/256-.798
��� � :; <�<=?>9�!@ ACB;��" #

$ � � �������
DFEG�2HJI�K!�
��� LM@ N?O?���QP�" #

�SR6	

� � � �
� � � �

� � � �

����
����

����

� � � �������
T E�K�I

��� B6�VU2" #

W ��� �����
	

� � � �
� � � �

� � � �
� � �

����
����

����
���

$ �X� �('����
Y K **1Z3[*\]\6/[5_^`*a�a�7G18
��� ��B]�
� :; <b��V cUed��VLMLM@ NfA6" #

g ��� �����
	

� � � �
� � � �

� � � � �

����
����

�����

$ ��� �����
	

� � � �
� � � �

�
����

����
�

h&i.j � �������
k�E l!�
��� B]@ P�" #

$ R 	

� � � �
� �

����
��

%m��� �����
	
-Zno/2/[p4/
��� Pq�!r!:;N]U�" #

$ � � �!�����
Yfs K T t H6�2I
��� A?:C�Vu " #

g �)� �������
�f�?�2IcKQvfK!�0K!�
��� N]:����!U2" #

Fig. 14. Final metrical tree of the sixth sentence of Figure 3.

the words treffer and doelpunt are synonyms for goal. Following Hirschberg (1992),

we relate givenness to topic structure, assuming that items only remain given within

one topic, which corresponds to one paragraph in the output of D2S.

The example sentence contains two cases of concept-givenness. First, the word

minuten (‘minutes’) expresses the same concept as minuut (‘minute’), occurring in

the previous sentence, and is therefore defocused. Second, the concept expressed by

the collocation een doelpunt laten aantekenen (‘having a goal noted’) subsumes the

concept expressed by the collocation op gelijke hoogte brengen (‘equalise’), which

occurred in the previous sentence. The words doelpunt, liet and aantekenen are

therefore regarded as expressing given information and marked as [-F].

3.2.3 Weak and strong nodes

The weak/strong labelling of the metrical tree nodes, which ultimately determines

on which words an accent will land, depends both on the structure of the tree and

on the focus properties of its nodes. In Dutch, like in English, normally the left node

of two sisters is weak and the right node is strong. If the structurally strong node

is marked [-F] while the structurally weak node is not, the weak/strong labelling is

switched. In Figure 14, showing the complete metrical tree of the example sentence,

this has occurred in three cases: (i) for the AP achtenveertig and the defocused N0

minuten, (ii) for the AP tweede and the defocused N0 doelpunt, and (iii) for the

NP zijn tweede doelpunt and the defocused V0 aantekenen.

From Data to Speech: A General Approach 75

When the metrical tree is complete, the focus markers indicate which constituents

should be accented, and the weak/strong labelling indicates on which words the

accent may land. The actual accentuation algorithm can therefore be very simple:

each node that is marked [+F] launches an accent, which trickles down the tree

along a path of strong nodes until it lands on a terminal node, dominating a word.

In the example, the accents launched by CP, IP and VP all coincide with the accent

launched by the NP node of zijn tweede doelpunt, finally landing on the word tweede.

Since the nodes dominating liet and aantekenen are weak, no accent trickles down to

them, and because they are marked [-F] they do not launch an accent themselves.

The PP node dominating the phrase na achtenveertig minuten does launch an

accent, which trickles down to the NP achtenveertig minuten, where it coincides

with the accent launched by the NP itself. Within the NP, the accent goes to left

because the right node dominating minuten has been defocused, so it ends up on the

word achtenveertig. Finally, the appositive, contrastive NP de aanvaller Hamming

consists of two NP’s (not shown in the tree due to space restrictions), both of which

launch an accent that trickles down to their head nouns.

3.2.4 Phrase boundaries

After accentuation, phrase boundaries are assigned. Currently, three phrase bound-

ary strengths are distinguished.7 The strongest of the three is the sentence-final

boundary (///). Next comes the major boundary (//), which follows words pre-

ceding a punctuation symbol other than a comma (e.g., ‘;’) and sentence-internal

clauses (i.e., a CP or IP within a sentence). Finally, a minor boundary (/) follows

words preceding a comma and constituents meeting the following conditions: (i)

the constituent has sufficient length (more than four syllables), (ii) the constituent

on its right is an I’, a C’ or a maximal projection, and (iii) both constituents con-

tain at least one accented word. This is a slightly modified version of a structural

rule proposed by Dirksen and Quené (1993). In our present example only the PP

Na achtenveertig minuten and the NP de aanvaller Hamming meet this condition

and are therefore followed by a minor phrase boundary. Since the example sen-

tence contains no punctuation and consists of just one clause, the only other phrase

boundary is the sentence-final one.

3.2.5 Evaluation

The accentuation algorithm of D2S was formally evaluated for Dutch in a small-

scale experiment (Nachtegaal 1997). In the experiment, recordings were made of

non-professional speakers of Dutch who read aloud the plain text versions of texts

generated by the LGM of GoalGetter. The texts contained sentences which were

structurally similar to those of the example text given in Figure 3. ‘Expert listeners’

7 In longer texts, containing more complicated constructions, it might be desirable to
distinguish more levels. Sanderman (1996) proposes a boundary depth of five to achieve
more natural phrasing.

76 M. Theune, E. Klabbers, J. Odijk, J.R. de Pijper, and E. Krahmer

were presented with the recordings and indicated on which words they heard an

accent. The accentuation patterns produced by the speakers were then compared

to those generated by the system. The results of this comparison showed that

the number of words on which the accentuation by GoalGetter deviated from the

accentuation by the speakers was very small. For details, see Nachtegaal (1997).

For the algorithm determining the placement of phrase boundaries no formal

evaluation has taken place yet. However, we have informally compared the general

prosodic quality of the output of D2S with the output of the two best text-to-speech

systems currently available for Dutch (according to the anonymous evaluation in

Sluyter, Bosgoed, Kerkhoff, Meier, Rietveld, Sanderman, Swerts and Terken (1998).

One of the two systems employs the same speech synthesis as used in GoalGetter

(see Section 3.3.1); the other system employs a different kind of speech synthesis.

We used the two text-to-speech systems to pronounce some texts generated by the

GoalGetter system (plain text version). We then compared the prosodic quality of

the speech output to that produced by GoalGetter. We observed two main flaws,

displayed by both text-to-speech systems, which made their output sound somewhat

less natural than that of GoalGetter. First, the placement of phrase boundaries by

the two text-to-speech systems was less adequate than in D2S: several obvious

phrase boundaries were missing (e.g., between conjugated clauses), or misplaced

(e.g., between an adjective and the NP it modified). Second, both systems failed

to perform deaccentuation even in the simplest cases, like the second occurrence of

the word kaart (‘card’) in the following example:

(4) Blom gaf Cocu een gele kaart.

Vos kreeg een rode kaart / ?? Vos kreeg een rode kaart

Translation:

Blom handed Cocu a yellow card.

Vos received a red card. / ?? Vos received a red card.

3.3 Speech generation in D2S

The D2S system currently has two different output modes available in the SGM.

One is phonetics-to-speech synthesis and the other is phrase concatenation. These

modes are discussed in more detail below.

3.3.1 Phonetics-to-speech

Phonetics-to-speech generates speech not from unrestricted text, as in text-to-

speech, but from a phonetic transcription with prosodic annotations. This means

that prosody computation and grapheme-to-phoneme conversion must be done

prior to speech generation. We have already seen how the Prosody module of the

LGM generates prosodic markers, thus producing ‘enriched text’. For the benefit of

phonetics-to-speech, this enriched text must be converted into a phonetic transcrip-

tion. Because the LGM generates an orthographic representation with a unique pho-

netic representation, it is possible to do errorless grapheme-to-phoneme conversion

by lexical lookup instead of rules. The speech output is generated by concatenating

From Data to Speech: A General Approach 77

diphones, small speech segments consisting of the transition between two adjacent

phonemes. A complete diphone inventory for a language covers all possible tran-

sitions between any two sounds of that language. The phonetics-to-speech system

Calipso, developed at IPO, uses a method called phase synthesis, which combines

the advantages of PSOLA and mixed-excitation LPC to achieve an output qual-

ity that is quite high (Gigi and Vogten 1997). In two anonymous tests concerning

subjective evaluation under telephone conditions, Calipso was judged favourably

on several aspects, including general quality, intelligibility and voice pleasantness

(Rietveld, Kerkhoff, Emons, Meijer, Sanderman and Sluijter 1997; Sluijter et al.

1998).

Current diphone synthesis systems reach a high degree of intelligibility. However,

recent evaluations show that when synthetic speech is sent through a telephone

channel, intelligibility decreases significantly. In GSM (mobile phone) conditions,

intelligibility drops even further (Rietveld et al. 1997). Furthermore, naturalness

still leaves a great deal to be desired. Still, it was implemented in the D2S system

because it offers unlimited flexibility. In addition, it allows for the testing of the

prosody assignment algorithm used in the system, because the prosodic realisation

of synthesised speech can be controlled to a large extent.

In order to achieve more natural sounding speech output, we are currently con-

centrating on the improvement of a few specific aspects of the diphone synthesis

system, such as the occurrence of audible discontinuities at diphone boundaries

(Klabbers 1997) and duration control (Klabbers 2000).

3.3.2 Phrase concatenation using prosodic variants

Unlike speech synthesis, phrase concatenation offers a speech quality that is close to

that of natural speech. Therefore, we chose this technique as the primary technique

for speech generation in D2S.

Our advanced phrase concatenation technique (Klabbers 2000) can be seen as an

extension to the simple concatenation technique. It resembles the technique that

Waterworth used in the telephone announcement system (Waterworth 1983), in

that several prosodic variants of otherwise identical words and phrases are used.

An important difference is that Waterworth’s approach is specifically aimed at the

pronunciation of telephone numbers, whereas our approach is far more general and

completely domain-independent. Our phrase concatenation technique is similar to

the one used in the Appeal system (de Pijper 1997) in that the phrases are embedded

in (dummy) carrier phrases during recording. An important difference is that the

phrases are recorded in different prosodic versions. As a consequence, our method

requires no additional manipulation or coding of the recordings. This results in a

speech quality that approaches that of natural speech.

Our use of several prosodic variants relates especially to the slots in the templates.

The fixed parts of the syntactic templates, corresponding to the carrier sentences

can usually be recorded as a whole, and in only one version. Sometimes, it is more

convenient to split the carrier into two or more phrases, if parts of the carrier occur

in several other carrier sentences as well. The prosody of the slots in the templates

78 M. Theune, E. Klabbers, J. Odijk, J.R. de Pijper, and E. Krahmer

continuation

[500 ms]

(3)

(1)

[500 ms]

(6)

[200 ms]/
[300 ms]

Accent

(2)

[200 ms]/
[300 ms]

(5)

(4)

Boundary

Minor / Major

None

Finality

NoYes

Fig. 15. Stylised examples of the different prosodic versions that are needed. Two fac-
tors determine their pitch and pausing: the accentuation and the position relative to a
minor/major/final phrase boundary. The pauses are indicated between brackets.

however, is most crucial, because there the variable (and usually most important)

information is inserted. In order to find out which prosodically distinct versions we

need for these slot fillers we analysed texts generated by the LGM which were made

audible through our phonetics-to-speech system (Calipso). The intonation rules

in this system are based on the IPO Grammar of Intonation (Collier and ’t Hart

1981; ’t Hart, Collier and Cohen 1990), which describes the intonation of a sentence

in terms of pitch movements. It assigns (combinations of) pitch movements on the

basis of combinations of accents and boundaries. After analysis we came up with six

different prosodic realisations, one for each context described in terms of prosodic

markers. Stylisations of these prosodic realisations are depicted in Figure 15 and

are explained below.

1. An accented slot filler which does not occur before a phrase boundary is

produced with the most frequently used pitch configuration, the so-called

(pointed) hat pattern, which consists of a rise and fall on the same syllable.

This contour corresponds to the prosodically neutral version used in many

other phrase concatenation techniques.

2. An accented slot filler which occurs before a minor or a major phrase boundary

is most often produced with a rise to mark the accent and an additional

continuation rise to signal that there is a non-final boundary. A short pause

follows the constituent, which is 200 ms in length in case of a minor boundary

(/) and 300 ms in case of a major boundary (//).

3. An accented slot filler which occurs in final position receives a final fall. It is

followed by a longer pause of 500 ms.

4. Unaccented slot fillers are pronounced on the declination line without any

pitch movement associated with them.

5. Unaccented slot fillers occurring before a minor or a major phrase boundary

only receive a small continuation rise. This prosodic situation does not occur

very often. The LGM usually puts a minor or major phrase boundary imme-

diately after an accented word. Again, a 200-ms or 300-ms pause is inserted.

From Data to Speech: A General Approach 79

Concept Number of Number of Number of
types prosodic variants tokens

Carrier phrase 378 1 378
Player name 407 6 2442
Team name 18 6 108
Trainer name 18 6 108
Place name 18 6 108
Stadium name 18 6 108
Number in score8 20 2 40
Number in time expression 200 2 400

Total: 1022 3692

Table 1. Composition of the GoalGetter phrase database. For each concept it is indicated

how many types there are in the database, how many prosodic variants are recorded of

each concept, and the resulting number of tokens.

6. Unaccented slot fillers in a final position are produced with final lowering,

i.e., a declination slope that is steeper than in other parts of the utterance.

They are followed by a 500-ms pause.

When recording the material for the phrase database, the slots in the carrier

sentences were filled with dummy words so that the fixed phrases to be stored in

the database could be excised easily. In this way, the effect of co-articulation at the

word boundaries was minimised. Fade-in and fade-out was applied to all material in

the phrase database to avoid clicks in concatenation. The slot fillers, such as player

names and time expressions, were embedded in dummy sentences that provide the

right prosodic context. The sentences were constructed in such a way as to make the

speaker produce the right prosodic realisation naturally. We used a female semi-

professional speaker. She received no specific instructions about how to produce

the sentences. The recordings were made in a sound-treated room using two high-

quality microphones which were positioned on either side of the speaker, a fixed

distance away from the mouth. The speech was recorded on a DAT-tape using a

48 kHz sampling frequency. The speech signal was stored on an SGI workstation

in mono with sampling frequency of 16 kHz. The concatenative units were excised

manually and sentences were generated to check for large differences in loudness to

be corrected. Only one or two recording sessions were required. The manual excision

of all the concatenative units was the most time-consuming task.

The GoalGetter phrase database consists of 3692 concatenative units that can

be divided into different categories as listed in Table 1. As can be seen, the player

8 ‘Number in score’ and ‘number in time expression’ are listed as different concepts,
since the numbers are pronounced differently. We assume (taking a safe margin) that
no numbers higher than twenty occur in the score. In GoalGetter the score is always
expressed as number - number, where both numbers are accented and are separated by

80 M. Theune, E. Klabbers, J. Odijk, J.R. de Pijper, and E. Krahmer

names (407 different names) form the bulk of the data, especially since they have

been recorded in six prosodic versions. In conventional phrase concatenation, the

size of the database would be 1022 units, the total number of types as indicated in

Table 1. Recording additional prosodic variants increases the size of the database

with a factor 3.6 to 3692, the total number of tokens in the table. IPO’s phrase

concatenation method has also been employed in OVIS, a spoken dialogue system

that provides train travel information. In this system, D2S is used for output gen-

eration. The phrase database of OVIS, which includes the names of all 382 Dutch

train stations, contains less than 3000 tokens.

To concatenate the proper words and phrases, an algorithm has been designed

that performs a mapping between the enriched text, i.e., text with accentuation and

phrasing markers, as provided by the LGM, and the pre-recorded phrases that have

to be selected. The different prosodic variants are chosen on the basis of the prosodic

markers. The algorithm recursively looks for the largest phrases to concatenate into

sentences. It works from left to right. First, it tries to find the string of N words that

contains the entire sentence. If it is present, it is retrieved and can be played. If not,

the string comprising the first N−1 words is looked up. This process continues until

a matching phrase is found. Then the remaining part of the sentence undergoes the

same procedure, until the entire sentence can be played.

3.3.3 Evaluation

The IPO phrase concatenation method has been evaluated in a formal listening ex-

periment (Klabbers 2000), in which it was compared to (i) natural speech output,

(ii) a conventional concatenation approach (as often used in commercial applica-

tions), and (iii) diphone synthesis. Twenty naive subjects rated twenty different

messages on intelligibility, fluency, overall quality and suitability for the applica-

tion on a 7-point scale. The results are summarised in Figure 16. The results show

that the IPO phrase concatenation compares well to natural speech on both intelli-

gibility and fluency, and scores very well on overall quality and suitability. Overall

quality and suitability for application were not tested for natural speech, but we

may safely assume that this form of speech output would receive near maximal

scores on these dimensions.

The conventional concatenation approach scores significantly less on all dimen-

sions than IPO’s phrase concatenation, indicating that it sounds less natural than

is sometimes assumed (Sluyter et al. 1998). The evaluation results indicate that

it is worth the extra effort to take a prosodically sophisticated approach to phrase

concatenation. Diphone synthesis scores worst on all dimensions. However, in appli-

a major phrase boundary. Since the score is always mentioned at the end of a sentence
(i.e., before a final boundary), this means that only two prosodic versions need to be
recorded: variant two for the first number and variant three for the second number (see
Table 15). In contrast, the numbers in a time expression are never followed by a phrase
boundary, so for these numbers only the prosodic versions one and four from Table 15
are relevant.

From Data to Speech: A General Approach 81

 N IC CC DS
1

2

3

4

5

6

7

Speech condition

S
ca

le

Intelligibility
Fluency
Overall quality
Suitability for application

Fig. 16. Average quality ratings for intelligibility, fluency, overall quality and suitability for
the application; N = natural speech, IC = IPO’s phrase concatenation, CC = commercial
phrase concatenation, DS = IPO’s diphone synthesis.

cations where the vocabulary is large, or changes frequently, phrase concatenation

will be infeasible and speech synthesis will be the only option available.

4 Discussion

We have presented a generic data-to-speech system, D2S, in which there is a tight

coupling between the language generation and the speech generation modules. Lan-

guage and speech generation in D2S is done by means of techniques which incorpo-

rate linguistic insights while achieving practical usability. For language generation,

we use a hybrid technique where the use of syntactically enriched templates is con-

strained by local conditions on the discourse context, while for speech generation

we combine pre-recorded phrases in a sophisticated manner, taking prosodic varia-

tions into account. Speech generation can also be achieved by phonetics-to-speech

synthesis, which offers greater flexibility but a less natural speech quality. The cou-

pling between the language and speech generation modules is brought about by

the computation of prosody by the LGM. This ensures that the syntactic, semantic

and discourse knowledge captured in the LGM can be used in speech generation,

without having the SGM compute the required information anew. Since linguistic

analysis of the generated texts would provide less reliable information than is avail-

able from the LGM, our approach also allows us to achieve a better prosodic quality

of the system’s output than could be obtained by simply feeding the outcome of

language generation into a text-to-speech system.

D2S is a practically useful system which can serve as a basis for a wide range

of applications. Systems developed on the basis of D2S can be run efficiently on

PC/Windows and on Unix platforms. With respect to language generation, porting

D2S to a new application mainly involves constructing a set of syntactic templates,

designing a structure representing the input data and, optionally, adding a domain

82 M. Theune, E. Klabbers, J. Odijk, J.R. de Pijper, and E. Krahmer

database; all other parts of the LGM are application independent. The work to

be done on speech generation depends on the chosen output mode. If phonetics-

to-speech is chosen, an off-the-shelf speech synthesis program may be used and

only an application-specific lexicon for grapheme-to-phoneme conversion has to be

made. Alternatively, an automatic grapheme-to-phoneme converter can be used.

Currently, such systems achieve an error-rate of approximately two per cent (van

den Bosch 1997); for names, however, hand-made lexicon entries are still required.

The use of phrase concatenation gives rise to more work, because it involves the

making of recordings, and the excision of the required phrases. This higher work-

load is compensated by a more natural sounding speech output (Klabbers 2000).

A major advantage of the use of syntactic templates in the LGM of D2S is that

there are no restrictions on the complexity of the sentences that can be generated,

nor on the type of information that can be expressed. The variation in the gener-

ated texts, achieved by the use of local conditions on the templates, is an important

feature of the system, especially in the light of applications like DYD and Goal-

Getter, where the user is likely to hear a number of generated texts in succession.

In addition, the ‘local condition’ approach seems to be quite suitable for language

generation in a dialogue situation, as it may be seen as a form of reactive planning.

A version of D2S which can be used in dialogue systems has recently been devel-

oped. It is used for the generation of system output in the OVIS system, a spoken

dialogue system that gives information about public transport in the Netherlands.

In OVIS, planning is performed by the Dialogue Management module, described

in Veldhuijzen van Zanten (1998). This module provides the LGM with conceptual

representations of the messages to be generated. The use of syntactic templates by

the LGM fits in well with such an architecture.

Although D2S is presented in this paper as one integrated system, the techniques

described here can also be used independently. A variant of the phrase concatenation

method used in D2S has been employed in a new version of the German train

information system described in Aust et al. (1995), while the LGM of D2S has been

used for the generation of English and German route descriptions in the VODIS

project, which is a European project aimed at the development of a speech interface

for a car navigation system (Pouteau and Arévalo 1998).

Finally, we would like to conduct a formal evaluation of the general prosodic

quality of the output of D2S as well as the quality of the texts generated by the

LGM. Evaluation of the prosodic quality may be done by formally comparing the

output of D2S with that of the best text-to-speech systems available for Dutch.

Informal comparison has so far given encouraging results. Evaluation of the LGM is

a more complicated matter. As Dale and Mellish (1998) have pointed out, evaluation

of natural language generation systems is still in its infancy, and there are no well-

established evaluation methods in this area. An evaluation method which seems

promising is the one adopted by Coch (1996) and Lester and Porter (1997). They

compared computer-generated texts to texts from human authors by having a panel

of judges, who did not know the source of the texts, rate their quality on several

dimensions. However, see Dale and Mellish (1998) for a discussion of some problems

related to such a ‘black box’ evaluation.

From Data to Speech: A General Approach 83

In addition to having separate evaluations of the LGM, the prosody module and

the SGM, it would also be interesting to see an evaluation of D2S as a whole.

However, as data-to-speech systems are obviously even more difficult to evaluate

than systems generating only written output, at present we may have to stick to a

‘glass box’ evaluation of the system.

Acknowledgements

The authors wish to thank Jan Landsbergen and two anonymous reviewers for their

useful comments on an earlier version of this paper. Authors Theune and Klabbers

carried out their research within the framework of the Priority Programme Lan-

guage and Speech Technology (TST), which is sponsored by NWO (Netherlands

Organisation for Scientific Research). Jan Odijk currently works at Lernout & Haus-

pie Speech Products, but the work for this publication was carried out when he was

employed at Philips Research Laboratories, Eindhoven, The Netherlands.

References

André, E., Herzog, G. and Rist, T. 1988. On the simultaneous interpretation of real world
image sequences and their natural language description: The system SOCCER. In Y.
Kodratoff (ed.), Proceedings of the 8th European Conference on Artificial Intelligence
(ECAI’88), pp. 449-454. London: Pitmann Publishing.

Aust, H., Oerder, M., Seide, F. and Steinbiss, V. 1995. The Philips automatic train
timetable information system. Speech Communication 17: 249-262.

Baart, J.L.G. 1987. Focus, Syntax and Accent Placement. Ph.D. thesis, University of Lei-
den.

Bateman, J. and Henschel, R. 1999. From full generation to ‘near-templates’ without losing
generality. In T. Becker and S. Busemann (eds.), Proceedings of the KI’99 Workshop
‘May I Speak Freely?’, pp. 13-18. DFKI Saarbrücken.

Bock, J. and Mazzella, J. 1983. Intonational marking of given and new information. Mem-
ory and Cognition 11(1): 64-76.

Bosch, A. van den. 1997. Learning to Pronounce Written Words. A Study in Inductive
Language Learning. Ph.D. thesis, Maastricht University.

Brown, G. 1983. Prosodic structure and the given/new distinction. In D. R. Ladd and A.
Cutler (eds.), Prosody: Models and Measurements, pp. 67-77. Berlin: Springer Verlag.

Busemann, S. and Horacek, H. 1998. A flexible shallow approach to text generation.
In Proceedings of the 9th International Workshop on Natural Language Generation
(IWNLG’98), pp. 238-247. Niagara-on-the-Lake, Ontario.

Cahill, L., Doran, C., Evans, R., Mellish, C., Paiva, D., Reape, M., Scott, D. and Tipper,
N. 1999. In search of a reference architecture for NLG systems. In Proceedings of the
7th European Workshop on Natural Language Generation (EWNLG’99), pp. 77-85. KIT
Report 97, Toulouse, France.

Carenini, G., Mittal, V.O. and Moore, J.D. 1994. Generating patient-specific interactive
natural language explanations. In Proceedings of the 18th Annual Symposium on Com-
puter Applications in Medical Care (SCAMC’94). Washington D.C.

Chafe, W.L. 1974. Language and consciousness. Language 50: 111-133.

Chafe, W.L. 1976. Givenness, contrastiveness, definiteness, subjects, topics and points of
view. In C. N. Li (ed.), Subject and Topic, pp. 25-55. New York: Academic Press.

Chomsky, N. 1981. Lectures on Government and Binding. Dordrecht: Foris.

84 M. Theune, E. Klabbers, J. Odijk, J.R. de Pijper, and E. Krahmer

Coch, J. 1996. Evaluating and comparing three text-production techniques. In Proceedings
of the 16th International Conference on Computational Linguistics (COLING-96), pp.
249-254. Copenhagen, Denmark.

Collier, R. and ’t Hart, J. 1981. Cursus Nederlandse Intonatie. Leuven: Acco.
Dale, R. and Mellish, C. 1998. Towards evaluation in natural language generation. In A.

Rubio, N. Gallardo, R. Castro and A. Tejada (eds.), Proceedings of the 1st International
Conference on Language Resources and Evaluation, pp. 555-562. Paris: The European
Language Resources Association.

Dale, R. and Reiter, E. 1995. Computational interpretations of the Gricean maxims in the
generation of referring expressions. Cognitive Science 18: 233-263.

Deemter, K. van. 1994. What’s new? A semantic perspective on sentence accent. Journal
of Semantics 11: 1-31.

Deemter, K. van, Krahmer E. and Theune, M. 1999. Plan-based vs. template-based NLG:
A false opposition? In T. Becker and S. Busemann (eds.), Proceedings of the KI’99
Workshop ‘May I Speak Freely?’, pp. 1-5. DFKI Saarbrücken.

Deemter, K. van, Landsbergen, J., Leermakers, R. and Odijk, J. 1994. Generation of spoken
monologues by means of templates. In L. Boves and A. Nijholt (eds.), Proceedings of
the 8th Twente Workshop on Language Technology (TWLT 8): Speech and Language
Engineering, pp. 87-96. Enschede, The Netherlands.

Deemter, K. van and Odijk, J. 1997. Context modeling and the generation of spoken
discourse. Speech Communication 21(1/2): 101-121

Dirksen, A. 1992. Accenting and deaccenting: A declarative approach. In Proceedings of
the 14th International Conference on Computational Linguistics (COLING-92), pp. 865-
869. Nantes, France.

Dirksen, A. and Quené, H. 1993. Prosodic analysis: The next generation. In V. van Heuven
and L. Pols (eds.), Analysis and Synthesis of Speech: Strategic Research Towards High-
Quality Text-to-Speech Generation, pp. 131-144. Berlin - New York: Mouton de Gruyter.

Geldof, S. and van de Velde, W. 1997. An architecture for template based (hyper)text gen-
eration. In Proceedings of the 6th European Workshop on Natural Language Generation
(EWNLG’97), pp. 28-37. Leiden, The Netherlands.

Gigi, E. and Vogten, L. 1997. A mixed-excitation vocoder based on exact analysis of
harmonic components. In IPO Annual Progress Report 32: 105-110. Eindhoven: IPO.

Grice, H.P. 1975. Logic and conversation. In P. Cole and J. Morgan (eds.), Syntax and
Semantics: Vol. 3, Speech Acts, pp. 43-58. New York: Academic Press.

Halliday, M.A.K. 1967. Notes on transitivity and theme in English. In Journal of Linguis-
tics 3: 199-244.

Hart, J. ’t, Collier, R. and Cohen, A. 1990. A Perceptual Study of Intonation: An Experi-
mental Phonetic Approach to Speech Melody. Cambridge: Cambridge University Press.

Hirschberg, J. 1992. Using discourse context to guide pitch accent decisions in synthetic
speech. In G. Bailly, C. Benôıt and T.R. Sawallis (eds.), Talking Machines: Theories,
Models and Designs, pp. 367-376. Amsterdam: Elsevier Science Publishers B.V.

Joshi, A. 1987. An introduction to Tree Adjoining Grammars. In A. Manaster-Ramer
(ed.), Mathematics of Language, pp. 87-114. Amsterdam: John Benjamins.

Klabbers, E. 1997. High-quality speech output generation through advanced phrase con-
catenation. In Proceedings of the COST Workshop on Speech Technology in the Public
Telephone Network: Where are We Today?, pp. 85-88. Rhodes, Greece.

Klabbers, E. 2000. Segmental and Prosodic Improvements to Speech Generation. Ph.D.
thesis, Eindhoven University of Technology.

Klabbers, E., Krahmer, E. and Theune, M. 1998. A generic algorithm for generating spoken
monologues. In Proceedings of the 5th International Conference on Spoken Language
Processing (ICSLP’98), pp. 2759-2762. Sydney, Australia.

Krahmer, E. and Theune, M. 1999. Efficient generation of descriptions in context. In R.
Kibble and K. van Deemter (eds.), Proceedings of the Workshop on the Generation of
Nominals, ESSLLI’99. Utrecht, The Netherlands.

From Data to Speech: A General Approach 85

Lester, J. and Porter, B. 1997. Developing and empirically evaluating robust explanation
generators: The knight experiments. Computational Linguistics 23(1): 65-102.

McKeown, K., Robin, J. and Kukich, K. 1995. Generating concise natural language sum-
maries. Information Processing and Management 31(5): 703-733.

Moulines, E. and Charpentier, F. 1990. Pitch synchronous waveform processing techniques
for text-to-speech synthesis using diphones. Speech Communication 9(5/6): 453-467.

Mykowiecka, A. 1991. Natural-language generation – an overview. International Journal
of Man-Machine Studies 34: 497-511.

Nachtegaal, D. 1997. An Evaluation of GoalGetter’s Accentuation. Report 1142, IPO,
Eindhoven.

Noord, G. van, Bouma, G., Koeling, R. and Nederhof, M. 1999. Robust grammatical
analysis for spoken dialogue systems”, Natural Language Engineering 5(1): 45-93.

Odijk, J. 1995. Generation of coherent monologues. In T. Andernach and M. Moll and A.
Nijholt (eds.), CLIN V: Proceedings of the 5th CLIN Meeting, pp. 123-131. Enschede,
The Netherlands.

Pan, S. and McKeown, K.R. 1997. Integrating language generation with speech synthesis
in a concept to speech system. In K. Alter, H. Pirker and W. Finkler (eds.) Proceedings
of the Workshop on Concept-to-Speech Generation Systems, ACL/EACL’97, pp. 23-28.
Madrid, Spain.

Pierrehumbert, J. and Hirschberg, J. 1990. The meaning of intonational contours in the
interpretation of discourse. In P.R. Cohen, J. Morgan and M.E. Pollack (eds.), Intentions
in Communication, pp. 271-311. Cambridge: MIT Press.

Pouteau, X. and Arévalo, L. 1998. Robust spoken dialogue systems for consumer products:
A concrete application. In Proceedings of the 5th International Conference on Spoken
Language Processing (ICSLP’98), pp. 1231-1234. Sydney, Australia.

Prevost, S. 1995. A Semantics of Contrast and Information Structure for Specifying Into-
nation in Spoken Language Generation. Ph.D. thesis, University of Pennsylvania.

Pijper, J.R. de. 1997. High quality message-to-speech generation in a practical application.
In J. van Santen, R. Sproat, J. Olive and J. Hirschberg (eds.), Progress in Speech
Synthesis, pp. 575-589. New York: Springer Verlag.

Reiter, E. 1994. Has a consensus NL generation architecture appeared, and is it psy-
cholinguistically plausible? In Proceedings of the 7th International Workshop on Natural
Language Generation (IWNLG’94), pp. 163-170. Kennebunkport, USA.

Reiter, E. 1995. NLG vs. templates. In Proceedings of the 5th European Workshop on
Natural Language Generation (EWNGL’95), 95-106. Leiden, The Netherlands.

Reiter, E. 1999. Shallow vs. deep techniques for handling linguistic constraints and
optimisations. In Proceedings of the KI’99 Workshop ‘May I Speak Freely?’. DFKI
Saarbrücken.

Reiter, E. and Dale, R. 1997. Building applied natural language generation systems. Nat-
ural Language Engineering 3(1): 57-87.

Reiter, E. and Mellish, C. 1993. Optimizing the costs and benefits of natural language
generation. In Proceedings of the 13th International Joint Conference on Artificial In-
telligence (IJCAI’93), pp. 1164-1169. Chambery, France.

Rietveld, T., Kerkhoff, J., Emons, M.J.W.M., Meijer, E.J., Sanderman, A.A. and Sluijter,
A.M.C. 1997. Evaluation of speech synthesis systems for Dutch in telecommunication
applications in GSM and PSTN networks. In G. Kokkinakis, N. Fakotakis and E. Der-
matas (eds.), Proceedings of the ESCA 5th European Conference on Speech Communi-
cation and Technology (Eurospeech’97), pp. 577-580. Rhodes, Greece.

Robin, J. 1994. Automatic generation and revision of natural language report summaries
providing historical background. In Proceedings of the 11th Brazilian Symposium on
Artificial Intelligence. Fortaleza, Brazil.

Sanderman, A. 1996. Prosodic Phrasing: Production, Perception, Acceptability and Com-
prehension. Ph.D. thesis, Eindhoven University of Technology.

86 M. Theune, E. Klabbers, J. Odijk, J.R. de Pijper, and E. Krahmer

Sluijter, A., Bosgoed, E., Kerkhoff, J., Meier, E., Rietveld, T., Sanderman, A., Swerts, M.
and Terken, J. 1998. Evaluation of speech synthesis systems for Dutch in telecommunica-
tion applications. In Proceedings of the 3rd ESCA/COCOSDA International Workshop
on Speech Synthesis, pp. 213-218. Jenolan Caves, Australia.

Steedman, M. 1990. Structure and intonation in spoken language understanding. In Pro-
ceedings of the 28th Annual Meeting of the Association for Computational Linguistics
(ACL’90), pp. 9-17. Pittsburgh, USA

Steedman, M. 1996. Representing discourse information for spoken dialogue generation. In
Proceedings of the International Symposium on Spoken Dialogue, ICSLP’96. Philadel-
phia, USA.

Tanaka, K., Hasida, K. and Noda, I. 1998. Reactive content selection in the generation of
real-time soccer commentary. In Proceedings of the 36th Annual Meeting of the Associ-
ation for Computational Linguistics and the 17th International Conference on Compu-
tational Linguistics (COLING-ACL’98), pp. 1282-1288. Montreal, Canada.

Terken, J. and Nooteboom, S. 1987. Opposite effects of accentuation and deaccentua-
tion on verification latencies for given and new information. Language and Cognitive
Processes 2: 145-163.

Theune, M. 19997a. Contrastive accent in a data-to-speech system. In Proceedings of
the 35th Annual Meeting of the Association for Computational Linguistics and the 8th
Conference of the European Chapter of the Association for Computational Linguistics
(ACL/EACL’97), pp. 519-521. Madrid, Spain.

Theune, M. 1997b. GoalGetter: Predicting contrastive accent in data-to-speech genera-
tion. In K. van Deemter, J. Landsbergen, J. Odijk and G. Veldhuijzen van Zanten
(eds.), CLIN VII: Proceedings of the 7th CLIN Meeting, pp. 177-190. Eindhoven, The
Netherlands.

Theune, M. 1999. Parallelism, coherence, and contrastive accent. In Proceedings of the 6th
European Conference on Speech Communication and Technology (Eurospeech’99), pp.
555-558. Budapest, Hungary.

Theune, M. 2000. From Data to Speech: Language Generation in Context. Ph.D. thesis,
Eindhoven University of Technology.

Theune, M., Klabbers, E., Odijk, J. and de Pijper, J.R. 1997. Computing prosodic proper-
ties in a data-to-speech system. In K. Alter, H. Pirker and W. Finkler (eds.) Proceedings
of the Workshop on Concept-to-Speech Generation Systems, ACL/EACL’97, pp. 39-45.
Madrid, Spain.

Veldhuijzen van Zanten, G. 1998. Adaptive mixed-initiative dialogue management. In Pro-
ceedings of the IEEE 4th Workshop on Interactive Voice Technology for Telecommuni-
cations Applications (IVTTA’98), pp. 65-70. Turin, Italy.

Waterworth, J.A. 1983. Effect of intonation form and pause durations of automatic tele-
phone number announcements on subjective preference and memory performance. Ap-
plied Ergonomics 14(1): 39-42.

White, M. and Caldwell, T. 1998. Exemplars: A practical, extensible framework for
dynamic text generation. In Proceedings of the 9th International Workshop on Natural
Language Generation (IWNLG’98), pp. 266-275. Niagara-on-the-Lake, Ontario.

Young, S. and Fallside, F. 1979. Speech synthesis from concept: A method for speech
output from information systems. Journal of the Acoustical Society of America 66: 685-
695.

Zue, V. 1997. Conversational interfaces: Advances and challenges. In Proceedings of the
5th European Conference on Speech Communication and Technology (Eurospeech’97),
pp. 9-18. Rhodes, Greece.

