01. In this exercise, we will derive a formula for the solution to Laplace’s equation in a half-plane,
\[u_{xx} + u_{yy} = 0, \quad \text{with} \quad x \in \mathbb{R} \quad \text{and} \quad y > 0, \quad \text{and subject to the boundary condition} \quad u(x, 0) = f(x). \]

(a) Apply separation of variables to derive an eigendecomposition for the solution \(u \). Demand that \(u \) remains bounded to deduce that all negative numbers (and only these) are eigenvalues.

(b) Write \(u \) as a linear superposition of the eigenfunctions; since the spectrum is continuous, we write
\[
 u(x, y) = \int_0^\infty \left[a_\omega \cos(\omega x) + b_\omega \sin(\omega x) \right] e^{-\omega y} d\omega.
\]
(1)
Now use the boundary condition to express the coefficients \(a_\omega \) and \(b_\omega \) in terms of \(f \).

(c) Use the identity
\[
\int_0^\infty e^{-a\omega} \cos(b\omega) \, d\omega = \frac{a}{a^2 + b^2}
\]
and the formulas for \(a_\omega \) and \(b_\omega \) derived above to rewrite (1) in its final form,
\[
 u(x, y) = \frac{y}{\pi} \int_{-\infty}^\infty \frac{f(\xi)}{y^2 + (\xi - x)^2} \, d\xi.
\]

02. Assume that \(\Omega \) is a domain (in \(\mathbb{R}^2 \) or \(\mathbb{R}^3 \)) bounded by a piecewise smooth closed curve \(\partial \Omega \). Let \(u, v \in C^2(\bar{\Omega}) \).

(a) Prove Green’s first identity,
\[
\iint_{\Omega} (u \Delta v + \nabla u \cdot \nabla v) \, dA = \oint_{\partial \Omega} u \frac{\partial v}{\partial n} \, ds,
\]
(2)
where \(\partial v/\partial n = \hat{n} \cdot \nabla v \) is the directional derivative of \(v \) along \(\hat{n} \)—the outwards pointing, unit vector field normal to the boundary \(\partial \Omega \). Use this to derive Green’s second and third identities,
\[
\iint_{\Omega} (v \Delta u - u \Delta v) \, dA = \oint_{\partial \Omega} \left(v \frac{\partial u}{\partial n} - u \frac{\partial v}{\partial n} \right) \, ds \quad \text{and} \quad \iint_{\Omega} \Delta u \, dA = \oint_{\partial \Omega} \frac{\partial u}{\partial n} \, ds,
\]
respectively.

(b) Suppose that \(u \) is harmonic in \(\Omega \), and that \(u \) satisfies homogeneous Dirichlet boundary conditions:
\[
\Delta u(x) = 0, \quad \text{for} \quad x \in \Omega, \quad \text{and} \quad u(x) = 0, \quad \text{for} \quad x \in \partial \Omega.
\]
Use (2) to show that \(u(x) = 0 \) for all \(x \in \bar{\Omega} \). Can you derive this same result in another way?

03. Prove the mean value property for harmonic functions in a bounded domain \(D \subset \mathbb{R}^2 \),
\[
 u(x) = \frac{1}{2\pi R} \oint_{\partial B(x, R)} u(y) \, ds(y),
\]
(3)
in two different ways. Here, the integral extends over the circle \(\partial B(x, R) \) which forms the boundary of a disk \(B(x, R) \) centered at \(x \in \Gamma \) and having a radius \(R \) sufficiently small to ensure that \(B(x, R) \subset D \).
(a) First, shift x to the origin by a linear change of coordinates. Then, switch to polar coordinates and use Poisson’s formula,

$$u(r, \theta) = \frac{\rho^2 - r^2}{2\pi} \int_0^{2\pi} \frac{u(\rho, \phi)}{\rho^2 - 2r\rho \cos(\phi - \theta) + r^2} \, d\phi,$$

where (r, θ) is any point in the (shifted) domain.

Here, ρ is any positive number such that $B(0, \rho)$ is fully contained in that domain.

(b) Use, instead, the representation theorem for (twice continuously differentiable) functions in \mathbb{R}^2 (cf. HW #04, problem #02),

$$u(x) = \frac{1}{2\pi} \oint_{\partial \Omega} \left[\frac{\partial u(y)}{\partial n} \ln \frac{1}{|y - x|} - u(y) \frac{\partial}{\partial n} \ln \frac{1}{|y - x|} \right] \, ds(y) - \frac{1}{2\pi} \iint_{\Omega} \Delta u(y) \ln \frac{1}{|y - x|} \, dA(y).$$ \hspace{1cm} (4)

Here, $\Omega \subset D$ is any subdomain of D.

Good luck!