Applied Finite Element Methods

Onno Bokhove

Course 2011
Outline

1. Organization

2. Quadrilateral/Quadratic Basis Functions & Elements

3. Time integration
Outline

1. Organization

2. Quadrilateral/Quadratic Basis Functions & Elements

3. Time integration
Two-day Schedule

Part 1: Day 3: Wednesday

Chapter 8

- **Quadratic** basis functions in 1D & on triangles
- **Quadrilaterals** & reference coordinates
- **Curved** quadratic triangle
- Example: Stokes flow
- Exercises in the afternoon.

From:

J. van Kan, A. Segal, & F. Vermolen 2008
Numerical methods in Scientific Computing
VSSD
Two-day Schedule

Part 1: Day 3: Wednesday
Chapter 8
- **Quadratic** basis functions in 1D & on triangles
- **Quadrilaterals** & reference coordinates
- **Curved** quadratic triangle
- Example: Stokes flow
- Exercises in the afternoon.

From:

J. van Kan, A. Segal, & F. Vermolen 2008
Numerical methods in Scientific Computing
VSSD
Two-day Schedule

Part 2: Day 4: Thursday
Chapters 8, 10: 8.7, 10.1-10.5

- Overview 4th-order problems, Hermitian interpolation
- Ch. 10: Time integration heat equation: inequality for error
- Spatial discretization & consistency
- Time discretization & stability
- Worked example shallow water system: mesh of triangles/quadrilaterals
- Exercises in afternoon: Dr. Vijaya Ambati and Shavarsh Nurijanyan.

From:
J. van Kan, A. Segal, & F. Vermolen 2008
Numerical methods in Scientific Computing
VSSD
Two-day Schedule

Part 2: Day 4: Thursday
Chapters 8, 10: 8.7, 10.1-10.5
- Overview 4th-order problems, Hermitian interpolation
- **Ch. 10: Time integration** heat equation: inequality for error
- Spatial discretization & consistency
- Time discretization & stability
- **Worked example shallow water system**: mesh of triangles/quadrilaterals
- Exercises in afternoon: Dr. Vijaya Ambati and Shavarsh Nurijanyan.

From:

J. van Kan, A.Segal, & F. Vermolen 2008
Numerical methods in Scientific Computing
VSSD
Organizational details

Examination

- Theoretical exercises: three sets. Fred Vermolen.
- Numerical exercise for students from Twente and, optionally, others.
- Oral exam over the material for students from Twente.

Consultation: Onno Bokhove
Organizational details

Examination

- Theoretical exercises: three sets. Fred Vermolen.
- Numerical exercise for students from Twente and, optionally, others.
- Oral exam over the material for students from Twente.

Consultation: Onno Bokhove
Organizational details

Examination

- Theoretical exercises: three sets. Fred Vermolen.
- Numerical exercise for students from Twente and, optionally, others.
- Oral exam over the material for students from Twente.

Consultation: Onno Bokhove
Outline

1. Organization

2. Quadrilateral/Quadratic Basis Functions & Elements

3. Time integration
1D Lagrange interpolation; or, alternative geometric derivation:

1D reference element $\zeta \in [-1, 1]$: 3 nodes, left, right, mid point

Each basis function alternately unity at -1,0,1, resp., and zero elsewhere

Basis functions: $\zeta(\zeta - 1)/2, (1 - \zeta^2), \zeta(1 + \zeta)/2$ or $\lambda_i(2\lambda_i - 1)$ for $i = 1, 2$ and $4\lambda_1\lambda_2$

Disadvantage: basis functions don’t sum up to unity & some are negative and postive

Solution: Bernstein polynomials:

$(1 + \zeta)^2/4, (1 - \zeta^2)/2, (1 - \zeta)^2/4$
Quadratic Basis Functions & Elements

Lagrange polynomials

Bernstein polynomials

\(\psi_i(\zeta) \)

\(\psi_i(\zeta) \)
Quadratic triangles

2D construction; or, alternative geometric derivation:

- **2D reference element** $\zeta \in [0, 1], \eta \in [0, 1 - \zeta]$: 6 nodes, on vertices and mid points edges
- Each basis function unity at 6 nodes $(0, 0), (1, 0), (0, 1), (0.5, 0), (0.5, 0.5), (0, 0.5)$ and zero elsewhere
- **Basis functions**: $\psi_i = \lambda_i(2\lambda_i - 1), \psi_{ij} = 4\lambda_i\lambda_j$ for $i \neq j = 1, 2, 3$
- **Disadvantage**: basis functions don’t sum up to unity & some are negative as well as positive
- **Evaluation integrals**: Newton-Cotes, or Gaussian quadratures (online: . . .)
- **Solution**: Bernstein polynomials: . . .?
Quadrilateral elements

2D construction:

- **Square reference element**, e.g., \((\zeta, \eta) \in [-1, 1]^2\);
 alternative \((\zeta, \eta) \in [0, 1]^2\)
- Continuous, 'linear' functions on reference element:
 \[\phi_i = (1 \pm \zeta)(1 \pm \eta)/4; \quad i = 1, 2, 3, 4 \]
- Includes polynomials \(1, \zeta, \eta\) and \(\zeta \eta\)
- Transform back to \((x, y)\)–space:
 \[(x, y) = \sum_i (x_i, y_i)\phi_i(\zeta, \eta) \]
 for \(i = 1, 2, 3, 4\)
- **Isoparametric transformations**: straight sides mappings, nodes one-to-one
- Invertible if quadrilateral convex, better if angles < 135°
Quadratic Basis Functions & Elements

Lagrange polynomials on triangle

\[\eta \quad 0 \quad 0 \quad \zeta \]

\[\psi_1(\zeta) \]

\[\psi_2(\zeta) \]

\[\psi_3(\zeta) \]

\[\eta \quad 0 \quad 0 \quad \zeta \]

\[\psi_{12}(\zeta) \]

\[\psi_{23}(\zeta) \]

\[\psi_{13}(\zeta) \]
Quadrilateral elements

2D construction:

- Hence, \(\phi_i(x, y) \) implicitly defined
- Transform integrals from \((x, y)\)–space to reference space \((\zeta, \eta)\)–space.
- **Evaluate integrals** in references coordinates: transformations, . . .
- Use Newton-Cotes, or Gaussian quadrature rules (. . . online).
Curved quadratic triangles

- Simply use 6 quadratic basis functions in mapping:

\[
(x, y) = \sum_{i=1}^{6} (x_i, y_i) \phi_i
\]

with \(\phi_1 = \phi_1, \phi_2 = \phi_2, \phi_3 = \phi_3, \phi_4 = \phi_{12}, \phi_5 = \phi_{23}, \phi_6 = \phi_{13} \)

and corresponding vertices and midpoint nodes \((x_i, y_i)\)

- Angles triangle less than 135° (check Jacobian of mapping)

- Use quadrature for integrals on reference element: Newton-Cotes or Gaussian.
Example: Stokes flow

- Write problem in vector form
- Use Gauss’ rule and apply boundary conditions
- Determine conditions on test functions logically
- ...
Fourth order problems and Hermitian interpolation

- Continuity requirements on derivatives as well: C_0 & C_1 (why?) or expand system by using auxiliary variables thus reducing the highest order derivatives
- C_0 & C_1: one exercise on Hermitian interpolation

$$w_h = \sum_{j=1}^{2} w_j \psi_{j0}(x) + \sum_{j=1}^{2} \left(\frac{dw}{dx} \right)_j \psi_{j1}(x)$$ \hspace{1cm} (2)

with as unknown the values w_j at the nodes and their derivatives $\left(\frac{dw}{dx} \right)_j$

- Requirements: $\psi_{j0}(x_i) = \delta_{ij}, \left(\frac{d\psi_{j0}}{dx} \right)(x_i) = 0$, $\psi_{j1}(x_i) = 0, \left(\frac{d\psi_{j0}}{dx} \right)(x_i) = \delta_{ij}$
Fourth order problems and Hermitian interpolation

- Results derived via calculation on reference element:
 \[\psi_{10} = \lambda_1^2(2\lambda_2 + 1), \quad \psi_{20} = \lambda_2^2(2\lambda_1 + 1), \]
 \[\psi_{11} = 2\lambda_1^2\lambda_2 h_K/2, \quad \psi_{21} = -2\lambda_1\lambda_2^2 h_k/2 \]
 in element \(K \) of size \(h_K \)

- Details of use Hermitian interpolation given in reader of Jaap van der Vegt & Onno Bokhove (online)

- Graphs:
Outline

1 Organization

2 Quadrilateral/Quadratic Basis Functions & Elements

3 Time integration
Time integration

Ch. 10.1-10.5

- Ch. 10: Heat equation: inequality for error
- Spatial discretization & consistency
- Time discretization & stability
- Worked example shallow water system: mesh of triangles/quadrilaterals.
Consider IVP on $\Omega \in \mathbb{R}^2$ for $u = u(x, y, t)$:

$$\partial_t u = \nabla^2 u + f(x, y, t)$$

(3)

with initial condition $u_0 = u(x, y, 0)$ and boundary conditions

$$u(x, y, t) = g_1(x, y, t) \quad \text{on } \Gamma_1$$

(4)

$$\partial_n u = g_2(x, y, t) \quad \text{on } \Gamma_2$$

(5)

$$(\sigma u) + \partial_n u = g_3(x, y, t) \quad \text{on } \Gamma_3,$$

(6)

and steady state or equilibrium solution $u_E(x, y)$;

then . . .
then

\[R(t) < R(t_0) e^{-\gamma(t-t_0)} \quad \text{for } t > t_0, \gamma > 0 \]

(7)

with deviation from equilibrium \(R(t) = \int_\Omega (u - u_E)^2 d\Omega \)

The FEM discretization of (3) gives system of ODE’s

\[M \frac{du}{dt} = Su + f \]

(8)

with vector of unknowns \(u \), projected forcing vector \(f \), mass matrix \(M \), and Laplace matrix \(S \).

There is a discrete version of the inequality on equilibration —exercise 10.3.3.
\(\theta \)-method for time discretization of ODE’s of FEM discretisation reads:

\[
(M - \theta \Delta tS)u^{n+1} = (M + (1 - \theta)\Delta tS)u^n + (1 - \theta)f^n + \theta f^{n+1} \quad (9)
\]

- Explicit forward Euler: \(\theta = 0 \)
- Implicit backward Euler: \(\theta = 1 \)
- Crank-Nicholson: \(\theta = 1/2 \)

- \(M \) diagonal when Newton-Cotes integration used. Why?

Exercise 10.4.1.
Time integration

- ‘Error equation’ for error $\epsilon = y - u$ (exact y reads $d\epsilon/dt = A\epsilon$) as follows from system $M\frac{du}{dt} = Su + f$ \(10\)

- System absolutely stable only if real part of eigenvalues of $A = M^{-1}S$ negative: $Re(\lambda_k) < 0$

- Time discretization defines amplification matrix in:

$$\epsilon^{n+1} = G(\Delta tA)\epsilon^n \quad (11)$$

- After we diagonalize A introducing eigenvalue λ, scalar case becomes relevant

$$\epsilon^{n+1} = C(\Delta t\lambda)\epsilon^n \text{ from } \frac{d\epsilon}{dt} = \lambda\epsilon \quad (12)$$

- Numerical stability achieved when eigenvalue μ_k of $G(\Delta tA)$ satisfies:

$$|\mu_k| = |C(\Delta t\lambda_k)| < 1 \quad (13)$$
Time integration

Gershgorin’s circle theorem

- Eigenvalues λ of system also follow from generalized eigenvalue problem

$$Sx = \lambda Mx$$ \hspace{1cm} (14)

- For diagonal M, Gershgorin theorem is:

$$|\lambda| < \sup_k \frac{1}{|m_{kk}|} \sum_{i=1}^{N} |s_{ki}|$$ \hspace{1cm} (15)

- In 1D FEM with lumping $m_{ii} = (h_{i-1} + h_i)/2$, this gives

$$|\lambda_{max}| = \sup_i \frac{2}{h_{i-1} + h_i} (\frac{2}{h_{i-1}} + \frac{2}{h_i}) < \sup_i \frac{4}{h_{i-1} h_i}$$ \hspace{1cm} (16)
Time integration

Stability

- In FEM with lumping \(m_{ii} = (h_{i-1} + h_i)/2 \), Gershgorin’s theorem gives

\[
|\lambda_{max}| < \sup_i \frac{4}{h_{i-1}h_i}
\]

(17)

- Hence, the stability criterion becomes:

\[
\Delta t < \frac{c}{\lambda_{max}} = \frac{1}{2} \inf_i (h_{i-1}h_i)
\]

(18)

with \(c = 2 \) for forward Euler.

- Stability or forward Euler follows from Von Neumann analysis on \(\epsilon^{n+1} = (1 + \Delta t \lambda)\epsilon^n \)

- **Von Neumann stability analysis**: substitute \(\epsilon = q \) for complex \(q \), and require amplification \(|q| < 1 \); recall that \(\lambda \) is negative
Worked example: potential flow linear shallow water equations

Linear shallow water equations:

\[
\begin{align*}
\partial_t \eta + \nabla \cdot (H(x, y) \nabla \phi) &= 0 \quad (19) \\
\partial_t \phi + g \eta &= 0, \quad (20)
\end{align*}
\]

where:

- \(H = H(x, y) \) is given rest depth
- \(\eta = \eta(x, y, t) \) deviate of free surface (the wave)
- \(\phi = \phi(x, y, t) \) the velocity potential
- \(\nabla = (\partial_x, \partial_y) \) is the horizontal gradient
- \(g = 9.8\text{m/s}^2 \) is constant of acceleration of gravity.
Variational principle/Ritz method:

$$0 = \delta \int_0^T \int_0^{L_x} \int_0^{L_y} \phi \partial_t \eta - \frac{1}{2} H |\nabla \phi|^2 - \frac{1}{2} g \eta^2 \, dx \, dy \, dt \quad (21)$$

Initial and boundary conditions:

At $t = 0$: $\eta(x, 0) = \eta_0(x)$, $\phi(x, 0) = \phi_0(x)$; also $\delta \eta|_0^T = 0$

Periodic boundaries or solid walls with Neumann condition such that $\nabla \phi \cdot \hat{n} = 0$ with normal \hat{n} to the wall.
Worked example: goal

- **Goal:** Find a FEM discretization (weak formulation or via variational principle/Ritz’ method) in 2D on quadrilaterals and triangles, using Crank-Nicolson time discretization, or symplectic Euler forward scheme.

- Symplectic Euler forward: first update ϕ and then η while using the new update of ϕ^{n+1}. A 2nd-order version is Stormer-Verlet where ϕ is updated $\Delta t/2$, then η for Δt, and ϕ from intermediate steps $\phi^{n+1/2}$ and η^{n+1} (google online).
Worked example: plan for discretization

Steps involved:

1. Find weak formulation using global test functions and integration, or substitute expansion into variational principle/Ritz method
2. Define global matrices and derive ordinary differential equations for unknowns η_j and ϕ_j on nodes: . . .
3. Define (topologically regular) mesh: lots of indexing
4. Define mapping from global to local node numbers:
6. Assemble global matrices from local elemental matrices; pseudo code: . . .
7. Define time discretization: . . .
8. Solve matrix system to find unknowns next time step: . . .
9. Plot/export output when required
10. Finish program at $t = T_{end}$