The final assignment can be made individually or in pairs.

Assignment

Define the quadratic map

\[f(x) = r - x^2. \]

1. Use Mathematica to draw an orbit diagram with \(r <= 2 \).

2. Find the fixed points of \(f \). Determine for which values of \(r \) the fixed points exist, and for which values of \(r \) they are stable or unstable. Draw a bifurcation diagram where unstable points are plotted with dashed lines. Combine the bifurcation diagram with the orbit diagram.

Bifurcation curves

Points of order \(n \) with \(n > 1 \) can be found by finding the zeros of the function \(f^n(x) - x \). In order to exclude points of order \(k \) where \(k \) is a divisor of \(n \), it is better to find the zeros of \((f^n(x) - x)/(f^k(x) - x) \).

3. Find the points of order 2. Draw the points of order 2 in the combined orbit/bifurcation diagram.

4. Do the same thing for points of order 4 and 3.

Critical polynomials

The critical polynomials \(p_n(r) \) of \(f \) are defined as

\[p_n(r) = f^n(0). \]

(In general: \(p_n(r) = f^n(x_0) \) with \(f'(x_0) = 0 \).)

5. For \(n = 1, 2, 3, 4, 5 \), draw the critical polynomials \(p_n(r) \) in the orbit/bifurcation diagram.

6. In the ‘period-doubling range’ the critical polynomials seem to approach the points in the orbit diagram. Can you explain this?

The Feigenbaum constant

The points of order \(2^n \) can be found as the zeros of \((f^{2^n}(x) - x)/(f^{2^{n-1}}(x) - x) \). Define \(r_n \) as the smallest value of \(r \) for which the orbits of period \(2^n \) occur.

7. Find \(r_1 \) and \(r_2 \).

8. With the approximation \(\delta = 4.669 \) for the first Feigenbaum constant, use the result of (7) to find an estimate for the smallest value of \(r \) for which chaos exists.
The Lyapunov exponent

The Lyapunov exponent can be used to detect the values of r for which there are chaotic orbits, see section 10.5 of Strogatz’s book.

(9) Study example 10.5.3 in Strogatz’s book, and draw a graph similar to fig. 10.5.2.

(10) For which value of r chaos emerges for the first time (approximately)?