Introduction to Mathematics and Modeling

Midterm Test 1

Motivate all your answers.
The use of electronic devices is not allowed.

1.

Given is a circle with radius 3 and center O. The angle $\angle COB$ is 60°.

(a) [1 pt] Express angle $\theta = \angle AOB$ in radians.

(b) [1 pt] Find the length of the arc from A to B.

2. [1 pt] Of two angles α and β the sine and cosine values are given:

<table>
<thead>
<tr>
<th></th>
<th>\cos</th>
<th>\sin</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>$\frac{1}{2}\sqrt{3}$</td>
<td>$-\frac{1}{2}$</td>
</tr>
<tr>
<td>β</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}\sqrt{3}$</td>
</tr>
</tbody>
</table>

Find $\sin(\alpha + \beta)$.

3. [2 pt] The function f is defined by

$$f(x) = \frac{1}{1 - \frac{1}{x + 1}}$$

for all $x \neq 0$.

Prove that f is one-to-one.
4. (a) [2 pt] Evaluate
\[\log_3(9) + \frac{\ln \left(\frac{1}{2} \right)}{\ln(2)}. \]

(b) [1 pt] Use the approximations \(\ln 2 = 0.7 \) and \(\ln 10 = \frac{7}{3} \) to calculate an approximation of \(\log_2 1000 \).

Note:
Simplify your answers as much as possible. The final results should not contain any logarithms.

5. [2 pt] An exponentially decaying quantity \(y \) satisfies the following function:
\[y(t) = 100 \cdot (0.1)^t, \]
where \(t \) is measured in seconds. How many seconds does it take for \(y \) to decay to 1% of the initial quantity (the quantity at time \(t = 0 \))? Put in other words: find \(T \) such that \(y(T) \) is 1% of \(y(0) \).

Total: 10 points

Note: there is a trigonometric formula sheet attached to this test.
Trigonometry formulas

1. \(\cos(-\alpha) = \cos \alpha \)
2. \(\sin(-\alpha) = -\sin \alpha \)
3. \(\cos^2 \alpha + \sin^2 \alpha = 1 \)
4. \(\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \)
5. \(\sin(\alpha + \beta) = \cos \alpha \sin \beta + \sin \alpha \cos \beta \)
6. \(\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \)
7. \(\sin(\alpha - \beta) = \cos \alpha \sin \beta - \sin \alpha \cos \beta \)
8. \(\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha \)
9. \(\sin(2\alpha) = 2 \sin \alpha \cos \alpha \)
10. \(\sin \alpha \cos \alpha = \frac{1}{2} \sin(2\alpha) \)
11. \(\cos^2 \alpha = \frac{1}{2} + \frac{1}{2} \cos(2\alpha) \)
12. \(\sin^2 \alpha = \frac{1}{2} - \frac{1}{2} \cos(2\alpha) \)
13. \(\sin \alpha \cos \beta = \frac{1}{2} \sin(\alpha - \beta) + \frac{1}{2} \sin(\alpha + \beta) \)
14. \(\cos \alpha \cos \beta = \frac{1}{2} \cos(\alpha - \beta) + \frac{1}{2} \cos(\alpha + \beta) \)
15. \(\sin \alpha \sin \beta = \frac{1}{2} \cos(\alpha - \beta) - \frac{1}{2} \cos(\alpha + \beta) \)
16. \(\tan \alpha = \frac{\sin \alpha}{\cos \alpha} \)
17. \(\tan(-\alpha) = -\tan \alpha \)

Special angles

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\cos \alpha)</th>
<th>(\sin \alpha)</th>
<th>(\tan \alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\frac{\pi}{6})</td>
<td>(\frac{\sqrt{3}}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{\sqrt{3}})</td>
</tr>
<tr>
<td>(\frac{\pi}{4})</td>
<td>(\frac{\sqrt{2}}{2})</td>
<td>(\frac{\sqrt{2}}{2})</td>
<td>1</td>
</tr>
<tr>
<td>(\frac{\pi}{3})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{\sqrt{3}}{2})</td>
<td>(\sqrt{3})</td>
</tr>
<tr>
<td>(\frac{\pi}{2})</td>
<td>0</td>
<td>1</td>
<td>(\infty)</td>
</tr>
</tbody>
</table>