PIPELINE IMPLEMENTATIONS OF THE FAST FOURIER TRANSFORM (FFT)

• Consulted work:

DISCRETE FOURIER TRANSFORM (DFT)

• Consider a block of N samples of a (possibly complex-valued) data stream:

$$x[n], n = 0, 1, \ldots N - 1$$

• The discrete Fourier transform of this block is given by:

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j \frac{2\pi k}{N} n}, k = 0, 1, \ldots N - 1$$

INVERSE DFT (IDFT)

• The inverse DFT is almost the same computation as the DFT:

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k]e^{j \frac{2\pi k}{N} n}, n = 0, 1, \ldots N - 1$$
TWIDDLE FACTORS

- Define: $W_N = e^{-j \frac{2\pi}{N}}$

- Then DFT becomes: $X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}$

- W_N^{kn} is called a twiddle factor (it is a number on the unit circle in the complex plane).

MATRIX REPRESENTATION OF DFT

- The DFT can be expressed in matrix form:

$$X = \begin{bmatrix}
1 & 1 & 1 & \ldots & 1 \\
1 & W_N & W_N^2 & \ldots & W_N^{N-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & W_N^{N-1} & W_N^{2(N-1)} & \ldots & W_N^{(N-1)(N-1)}
\end{bmatrix} \cdot \begin{bmatrix}
x[0] \\
x[1] \\
x[2] \\
x[3] \\
x[4] \\
x[5] \\
x[6] \\
x[7]
\end{bmatrix}$$

- Number of complex multiplications involved (including trivial ones with 1, j, etc.): N^2

DFT VISUALIZATION

- The DFT basically matches frequencies.
- The following picture originates from Wikipedia (entry: “DFT matrix”):

DECIMATION-IN-TIME FFT (1)

- Split odd and even terms in DFT definition:

$$X[k] = \sum_{m=0}^{N/2-1} x[2m] W_N^{2mk} + \sum_{m=0}^{N/2-1} x[2m+1] W_N^{(2m+1)k}$$

for $k = 0, 1, \ldots, N - 1$
DECIMATION-IN-TIME FFT (2)

- Consider first half of outputs: \(k = 0, 1, \ldots \frac{N}{2} - 1 \)
- Rewrite, using \(W_{N}^{2mk} = W_{N/2}^{mk} \):

\[
X[k] = \sum_{m=0}^{N/2-1} x[2m]W_{N/2}^{mk} + \sum_{m=0}^{N/2-1} x[2m + 1]W_{N/2}^{mk}
\]

DECIMATION-IN-TIME FFT (3)

- DFT has been expressed in terms of half-size DFTs:

\[
X[k] = \sum_{m=0}^{N/2-1} x[2m]W_{N/2}^{mk} + \sum_{m=0}^{N/2-1} x[2m + 1]W_{N/2}^{mk}
\]

DECIMATION-IN-TIME FFT (4)

- Now consider second half of outputs:

\[
X\left[k + \frac{N}{2} \right] = \sum_{m=0}^{N/2-1} x[2m]W_{N/2}^{m(k+N/2)} + \sum_{m=0}^{N/2-1} x[2m + 1]W_{N/2}^{m(k+N/2)}
\]

\[
k = 0, 1, \ldots \frac{N}{2} - 1
\]

DECIMATION-IN-TIME FFT (5)

- Make use of the following identities:

\[
W_{N/2}^{m(k+N/2)} = W_{N/2}^{mN/2}W_{N/2}^{mk} = W_{N/2}^{mk}
\]

\[
W_{N}^{k+N/2} = W_{N}^{N/2}W_{N}^{k} = -W_{N}^{k}
\]
DECIMATION-IN-TIME FFT (6)

- The expression for the second half becomes the same as for the first except for a minus sign:

\[
x[k + \frac{N}{2}] = \sum_{m=0}^{N/2-1} x[2m]W_N^{mk} + \sum_{m=0}^{N/2-1} x[2m + 1]W_N^{mk}
\]

DECIMATION-IN-TIME FFT (7)

- One decimation-in-time step defines an \(N \)-point DFT in terms of two \(N/2 \)-point DFTs. They are combined by means of butterflies.

![Diagram of a butterfly](image)

- Applying the principle \(recursively \), results in a computation that consists of butterflies only.

DECIMATION-IN-TIME BUTTERFLY

- elementary FFT operation with two inputs and two outputs
- consisting of one complex multiplication, one complex addition and one complex subtraction:

![Diagram of a butterfly](image)
8-POINT DECIMATION-IN-TIME FFT

\[
\begin{align*}
 & x[0] \quad W_0^0 \quad X[0] \\
 & x[4] \quad W_0^0 \quad X[1] \\
 & x[2] \quad W_0^0 \quad W_0^2 \quad X[2] \\
 & x[6] \quad W_0^0 \quad W_0^2 \quad W_0^4 \quad X[3] \\
 & x[1] \quad W_0^0 \quad W_1^0 \quad X[4] \\
 & x[5] \quad W_0^0 \quad W_1^0 \quad W_1^2 \quad X[5] \\
 & x[3] \quad W_0^0 \quad W_1^0 \quad W_1^2 \quad W_1^4 \quad X[6] \\
 & x[7] \quad W_0^0 \quad W_1^0 \quad W_1^2 \quad W_1^4 \quad X[7]
\end{align*}
\]

COMPLEXITY REDUCTION

- Number of computations has been reduced:
 - From $O(N^2)$ for the DFT
 - To $O(N \log N)$ for the FFT

IMPLEMENTATION ISSUES

- Buffering of input is needed because of block-based nature.
- One could e.g. use a ping-pong memory:
 - While the input is filling one memory, the FFT could consume samples of the other memory.
 - After processing one block of samples, the memories change roles.
- Note the bit reversal of the addresses:
 - Address order can be found from increasing binary addresses read in reverse order $4 = 100_2$ e.g. becomes $1 = 001_2$.

DECIMATION-IN-FREQUENCY FFT (1)

- Split input block in first and second half and consider the outputs with even index:

\[
X[2m] = \sum_{n=0}^{N/2-1} x[n]W_N^{2mn} + \sum_{n=N/2}^{N-1} x[n]W_N^{2mn} \quad m = 0, 1, \ldots \frac{N}{2} - 1
\]
DECIMATION-IN-FREQUENCY FFT (2)

- Shift index in second sum:

\[X[2m] = \sum_{n=0}^{N/2-1} x[n]W_N^{2mn} + \sum_{n=0}^{N/2-1} x[n+N/2]W_N^{2m(n+N/2)} \]

\[m = 0, 1, \ldots \frac{N}{2} - 1 \]

DECIMATION-IN-FREQUENCY FFT (3)

- Using simplification rules mentioned earlier:

\[X[2m] = \sum_{n=0}^{N/2-1} (x[n] + x[n + N/2])W_N^{mn} \]

\[m = 0, 1, \ldots \frac{N}{2} - 1 \]

DECIMATION-IN-FREQUENCY FFT (4)

- This is a half-size DFT applied to an input stream consisting of pairs of the original input stream:

\[X[2m] = \sum_{n=0}^{N/2-1} (x[n] + x[n + N/2])W_N^{mn} \]

\[m = 0, 1, \ldots \frac{N}{2} - 1 \]

DECIMATION-IN-FREQUENCY FFT (5)

- Now consider the outputs with odd index:

\[X[2m + 1] = \sum_{n=0}^{N/2-1} x[n]W_N^{n(2m+1)} + \sum_{n=0}^{N/2-1} x[n+N/2]W_N^{(2m+1)(n+N/2)} \]

\[m = 0, 1, \ldots \frac{N}{2} - 1 \]
DECIMATION-IN-FREQUENCY FFT (6)

- With the usual type of simplifications:
 \[X[2m + 1] = \sum_{n=0}^{N/2-1} (x[n] - x[n + N/2]) W_N^m W_N^{mn/N} \]
 \[m = 0, 1, \ldots, \frac{N}{2} - 1 \]

- This is a half-size DFT applied on a sequence obtained by taking the difference of pairs of the input and multiplying them with factor \(W_N^m \).

DECIMATION-IN-FREQUENCY FFT (7)

8-POINT DECIMATION-IN-FREQ. FFT

- Similar to the decimation-in-time butterfly, but location of multiplication is now at the output side.

Decimation in time
Decimation in frequency
SUMMARY FFT BASICS

- **Decimation-in-time (DIT) FFT:**
 - “Divide and conquer” approach to DFT, based on grouping even and odd inputs in DFT definition
 - Butterfly: multiply before add/subtract
- **Decimation-in-frequency (DIF) FFT:**
 - “Divide and conquer” approach based on grouping even and odd outputs
 - Butterfly: multiply after add/subtract
- Both are of **radix-2** type: problem size is reduced by 2 at each stage

FFT IMPLEMENTATIONS

- FFTs can be realized on all kind of platforms:
 - Programmable processors
 - Dedicated hardware
- Here attention is paid to one type of implementation, viz. the **FFT pipelines**. An FFT pipeline transforms a computation with a block processing nature into one of a streaming nature.
- Issues of concern:
 - Area
 - Speed
 - Power
 - Memory access

RADIX-2 MULTI-PATH DELAY COMMUTATOR (R2MDC)

- Pipeline solution:
 - “Stream-like” processing of block-based algorithm.
- Examples based on 8-point FFT:
 - solutions scale for higher powers of 2.
- Originally proposed in:
R2MDC EFFICIENCY

- If implemented as presented, the pipeline has a 50% hardware utilization:
 - The first butterfly is idle half of the time until it can process new pairs of inputs.
 - All hardware operates at input sample frequency
- Situation can be easily improved by duplicating input buffer and operating it in ping-pong fashion:
 - Hardware utilization jumps to 100%.
 - All hardware operates at half the sample frequency.
- As there are no feedback paths, hardware can be further pipelined to cope with possibly long computational delays.

RADIX-2 SINGLE-PATH DELAY FEEDBACK (R2SDF)

- Alternative pipeline solution, with optimized memory size
- Originally proposed in:
R2SDF ELEMENT

- Element:
 - Either shifts first half of input in delay buffer and second half of output out of delay buffer (blue);
 - Or shifts second half of input into butterfly together with first half from delay buffer, first half of output to next stage and second half output into delay buffer (red).

SYMBOLIC REPRESENTATION OF R2SDF ELEMENT

R2SDF FOR 8-POINT FFT

R2SDF STEP-BY-STEP

A: \[\ldots 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7\]
B: \[0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7\]
C: \[0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7\]
D: \[\ldots 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7\]
R2SDF EFFICIENCY

- It needs to operate at same speed as input sample rate.
- Hardware utilization is 50%.
- Number of delay elements for N-point FFT:
 - R2SDF: \(N - 1 \)
 - R2MDC: \(\frac{3}{2}N - 2 \)
- R2SDF and R2MDC have the same number of (complex) adders and multipliers.

DELAY-BUFFER IMPLEMENTATION

- The straightforward implementation of a delay buffer in hardware would be a shift register.
- Such an implementation is not convenient (think of e.g. a 1024-point FFT):
 - Memory elements implemented by D-flipflops are large!
 - Shifting all data at every clock cycle consumes a lot of energy!
- Much better idea to keep the data in RAM and shift the address pointer(s) instead.

DUAL-PORT RAM DELAY BUFFER

- Dual-port RAM:
 - One read port with its own data and address
 - One write port with its own data and address
- Cyclic buffer: \(L+1 \) locations to store \(L \) items.

DELAY BUFFER WITH TWO SINGLE-PORT RAMS

- Idea is to alternatively read from and write to the two RAMs.
- Two single-port RAMs are cheaper than one dual-port RAM.
- Use LSB of address to connect to “write enable” (wen).
SPECIAL-PURPOSE RAMS

- Replace address decoder of RAM by single-bit shift register.
- Only one D-flipflop has output 1.
- Not much switching activity in shift-register (no waste of power).

RADIX-4 FFT

- Has both “decimation in time” as “decimation in frequency” variants.
- Idea is to express DFT as the combination of 4 DFTs whose sizes are one fourth of the original DFT.
- Takes advantage of the following symmetries:
 \[W_N^{nk+N/4} = -W_N^{nk+3N/4} = -jW_N^{nk} \]
- This leads to a reduction of the number of multipliers (multiplication by \(j \) can be performed without multiplier).

RADIX-4 DIF (1)

\[
X[4m] = \sum_{n=0}^{N/2-1} (x[n] + x[n + N/4] + x[n + N/2] + x[n + 3N/4])W_N^{mn}
\]

\[
X[4m + 1] = \sum_{n=0}^{N/2-1} (x[n] - jx[n + N/4] + -x[n + N/2] + jx[n + 3N/4])W_N^{mn}W_N^n
\]

\(m = 0, 1, \ldots \frac{N}{4} - 1 \)

RADIX-4 DIF (2)

\[
X[4m + 2] = \sum_{n=0}^{N/2-1} (x[n] - x[n + N/4] + x[n + N/2] - x[n + 3N/4])W_N^{mn}W_N^{2n}
\]

\[
X[4m + 3] = \sum_{n=0}^{N/2-1} (x[n] + jx[n + N/4] + -x[n + N/2] - jx[n + 3N/4])W_N^{mn}W_N^{3n}
\]

\(m = 0, 1, \ldots \frac{N}{4} - 1 \)
RADIX-4 DIF BUTTERFLY

Scaling with $+1$, -1, $+j$, $-j$

MULTIPLIER & ADDER COMPLEXITY

- **Radix-2 decomposition:**
 - Number of stages: $\log_2 N$
 - Multiplications per stage: $N/2$ in total: $\frac{N}{2} \log_2 N$
 - Additions per stage: N in total: $N \log_2 N$

- **Radix-4 decomposition:**
 - Number of stages: $\log_4 N = \frac{1}{2} \log_2 N$
 - Multiplications per stage: $3N/4$ in total: $\frac{3N}{4} \log_2 N$
 - Additions per stage: $3N$ in total: $\frac{3N}{2} \log_2 N$

RADIX-2² BUTTERFLY

RADIX-2² BUTTERFLY EVALUATION

- Radix-2² has the same number of multipliers as radix-4.
- It has fewer additions: $N \log_2 N$

- In a similar way, a radix-8 butterfly can be decomposed in a radix-2² butterfly.
RADIX-4 MULTI-PATH DELAY COMMUTATOR (R4MDC) PIPELINE FOR 16-POINT FFT

RADIX-4 SINGLE-PATH DELAY FEEDBACK (R4SDF) PIPELINE FOR 16-POINT FFT

EVALUATION RADIX-4 PIPELINES

- The multi-path structure:
 - Has a high memory overhead;
 - Has 100% multiplier utilization;
 - Can operate at one quarter of sample frequency.

- The single-path structure:
 - Has minimal memory;
 - Has a 75% multiplier utilization (multiplier drawn outside butterfly!)
 - Operates at sample frequency.