FIXED-POINT DESIGN

- Central issue: how to perform a desired computation with as few bits per operand as possible
- Some material based on:
- Thanks to Jeroen de Zoeten, for some material reused from his M.Sc. graduation presentation (2004).

TOPICS

- Fixed-point data types
- SystemC
- Peak-value estimation
- Word-length optimization

FIXED-POINT DATA TYPES

- A specific interpretation of a logic vector
 - Binary point
 - Integer and fractional part: \(iwl \) and \(fwl \) (integer and fractional word length)
 - Signed or unsigned

EXAMPLES OF FIXED-POINT NUMBERS

- Example pattern: 1101
 - With \(iwl = 2 \) and unsigned \(\rightarrow 13/4 \)
 - With \(iwl = 2 \) and signed \(\rightarrow -3/4 \)
 - With \(iwl = 6 \) and unsigned \(\rightarrow 52 \)
 - With \(iwl = 6 \) and signed \(\rightarrow -12 \)
 - With \(iwl = -1 \) and unsigned \(\rightarrow 13/32 \)
 - With \(iwl = -1 \) and signed \(\rightarrow -3/32 \)
FIXED-POINT ADDITION/SUBTRACTION

- Integer adder can be used after:
 - Alignment of binary point
 - Sign extension

A: Signed 2,4	(2,4)	S S S
B: Signed 4,2	(4,2)	S S 0 0
Y: Signed 3,1	(5,4)	S S
Y = A + B		

FIXED-POINT MULTIPLICATION

- Integer multiplier can directly be used.
- One only needs to figure out the location of the binary point.

| A: Signed 2,4 | (2,4) |
| B: Signed 4,2 | (4,2) |
| Signed 6,6 |

QUANTIZATION: TRUNCATION

- If the target provides less accuracy than the value to assign:
 - Truncation → no hardware

| (5,4) | 0 1 0 0 |
| (5,1) |

QUANTIZATION: ROUNDING

- If the target provides less accuracy than the value to assign:
 - Rounding (various modes) → extra hardware

| (5,4) | 0 1 0 0 |
| (5,1) | S 1 |
| (6,1) |

© Sabih H. Gerez, University of Twente, The Netherlands
OVERFLOW: WRAP AROUND

- If the value to assign is outside the range of target:
 - *Wrap around* → no hardware

OVERFLOW: SATURATION

- If the value to assign is outside the range of target:
 - *Saturation* (various modes) → extra hardware

SystemC

- Open source standard for system-level modeling, based on C++ class libraries and a simulation kernel.
- Provides modeling from system level down to (mainly) register-transfer level (RTL).
- For more details, see the Accellera web site (non-profit organization for system-level design):

SystemC FIXED-POINT DATA TYPES

- Declaration (signed and unsigned version):
 - `sc_fixed<wl, iwl, q_mode, o_mode, n_bits> x;`
 - `sc_ufixed<wl, iwl, q_mode, o_mode, n_bits> x;`

 - `wl`: word length, `iwl + fwl`
 - `iwl`: integer word length
 - `q_mode`: (optional) quantization mode, default is truncation
 - `o_mode`: (optional) overflow mode, default is wrap around
 - `n_bits`: (optional) number of bits for overflow (`n_bits` are saturated, the others are wrapped around)
 - `sc_fix/sc_ufix` data types can be resized at run time
SystemC FIXED-POINT CODE EXAMPLE

```c
sc_fixed<6, 2> a;
sc_fixed<6, 4> b;
sc_fixed<3, 2, SC_RND, SC_SAT> c;
c = a + b;
```

• Implementation:
 – Calculate sum at full precision
 – Perform quantization processing
 – Perform overflow processing

THE FIXED-POINT DESIGN PROBLEM (1)

• Mathematical descriptions of DSP algorithms often assume infinite precision in the signal representation.
• The closest approximation of infinite precision in computers is the floating-point number representation.
• Floating-point hardware is expensive and is avoided if possible.
• Implementations therefore use fixed-point hardware.

• Problem: which fixed-point formats should be used to obtain the cheapest implementation of the original algorithm?

THE FIXED-POINT DESIGN PROBLEM (2)

• One should look at:
 – The dynamic range: avoid overflow and therefore know peak values.
 – The accuracy: quantization levels.
BOUGANIS FIXED-POINT FORMAT

Considers signed numbers only; sign bit is not counted in size.

PEAK-VALUE ESTIMATION

- Related to the fact that signal magnitude may grow due to addition or multiplication
- In a stable system, the signal cannot grow indefinitely
- Question is: what is the maximal value encountered for each signal in the system?
- Issue is not directly related to accuracy, the number of bits used for each signal.

PEAK-VALUE ESTIMATION METHODS

- **Analytic:**
 - examine transfer functions
- **Data-range propagation:**
 - Interval analysis
 - Compute result interval from input intervals
 - Tends to overestimate requirements
- **Simulation-driven analysis:**
 - Monitor values produced during a representative simulation and record extremes (possible in System Studio)
 - Use a safety factor > 1

ANALYTIC PEAK-VALUE ESTIMATION

- Consider an FIR filter:

\[y[n] = \sum_{k=0}^{N} h[k] \cdot x[n - k] \]

- Then, an upper bound for the output value is found by:

\[y_{\text{peak}} = x_{\text{peak}} \sum_{k=0}^{N} |h[k]| \]

- For recursive filters, a similar approach can be followed, starting from a state-space representation.
INTERVAL ANALYSIS (1)

- Represent each value x as an interval: $\tilde{x} = [x^-, x^+]$
- For each arithmetic operation, one can calculate the result interval from the operand intervals. For example:

\[
\tilde{x} + \tilde{y} = [x^- + y^-, x^+ + y^+]
\]
\[
\tilde{x}\tilde{y} = [\min(x^-y^-, x^-y^+, x^+y^-, x^+y^+), \max(x^-y^-, x^-y^+, x^+y^-, x^+y^+)]
\]

INTERVAL ANALYSIS (2)

$[-2, 1]$

\[
\begin{array}{c}
0.3 \\
-0.4 \\
-0.7
\end{array}
\]
\[
\begin{array}{c}
[-0.6, 0.3] \\
[-0.4, 0.8] \\
[-0.7, 1.4]
\end{array}
\]

\[
\begin{array}{c}
[-1, 1.1] \\
[-1.4, 1.54]
\end{array}
\]

Beware: this is no FIR filter, but a phantasy design.

WORD-LENGTH PROPAGATION

<table>
<thead>
<tr>
<th>Type</th>
<th>Propagation rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAIN</td>
<td>For input (n_a, p_a) and coefficient (n_b, p_b): $p_j = p_a + p_b$ $n_j = n_a + n_b$</td>
</tr>
<tr>
<td>ADD</td>
<td>For inputs (n_a, p_a) and (n_b, p_b): $p_j = \max(p_a, p_b) + 1$ $n_j = \max(n_a, n_b + p_a - p_b) - \min(0, p_a - p_b) + 1$ (for $n_a > p_a - p_b$ or $n_b > p_b - p_a$)</td>
</tr>
<tr>
<td>DELAY or FORK</td>
<td>For input (n_a, p_a): $p_j = p_a$ $n_j = n_a$</td>
</tr>
</tbody>
</table>

QUANTIZATION: NOISE MODELING (1)

- Suppose signal with fixed-point format $(n, 0)$ is multiplied with another signal with fixed-point format $(n, 0)$ and the result is truncated to n bits.

 - Error ranges from 0 to $2^{-2n} - 2^{-n} \approx -2^{-n}$

 - Uniform distribution of error: $p(e) = 2^n$, $e \in [-2^{-n}, 0]$

 - Consider multiplication; is the error really uniformly distributed?
NOISE MODELING (2)

- Average error is: $-2^{-(n+1)}$

- Variance:
 $$\sigma^2 = \int_{-2^{-n}}^{0} 2^n \left[e + 2^{-(n+1)} \right]^2 de = \frac{1}{12} 2^{-2n}$$

NOISE PROPAGATION

- In linear time-invariant (LTI) systems, one can analytically calculate the effect of quantization in input or intermediate nodes to noise on the output.

- In case of non-linear systems, one could linearize the system by means of Taylor expansion (a similar approach as a small-signal model used in electronics).

- Noise propagation methods have the advantage of reduced computational complexity with respect to a simulations-only approach.

FIXED-POINT OPTIMIZATION PROBLEM

- Define a performance measure. Examples:
 - SNR at the output of a filter
 - Bit-error rate in a communication system

- Define a cost measure, such as the area of the circuit.

- Goal is to satisfy a performance requirement at minimal cost by optimally choosing a fixed-point format for each signal in the system.

- The most practical approach is to start with a floating-point model and gradually replace the data types by fixed-point types while monitoring performance by simulations.

SCHEDULING, ETC.

- Sharing of resources across multiple clock cycles puts additional constraints on the fixed-point format of signals.
NON-MONOTONIC BEHAVIOR

- One would expect that larger word lengths always improve the performance measure.
- It is possible, however, to construct systems where performance is non-monotonic, see:
- Such systems have *forks* that use different fixed-point formats at each end and reconverge.