192620010
Mobile & Wireless Networking

Lecture 8:
Bluetooth & Zigbee

[Schiller, Section 7.5]
[Reader, Part 7]

Geert Heijenk
Outline of Lecture 10

- **Bluetooth**
 - General characteristics
 - Piconets & scatternets
 - Basic Access scheme
 - Baseband (MAC layer)
 - Higher layer protocols
 - Profiles and Versions

- **Zigbee**
 - Zigbee vs. IEEE 802.15.4
 - Architecture & Topologies
 - IEEE 802.15.4 MAC layer
Bluetooth

Idea

- Universal radio interface for ad-hoc wireless connectivity
- Interconnecting computer and peripherals, handheld devices, PDAs, cell phones
- Embedded in other devices, goal: 5€/device
- Short range (10 m), low power consumption, license-free 2.45 GHz ISM
- Voice and data transmission, approx. 1 Mbit/s gross data rate (original version)

One of the first modules (Ericsson).
Bluetooth

History
- 1994: Ericsson (Mattison/Haartsen), “MC-link” project
- Renaming of the project: Bluetooth according to Harald “Blåtand” Gormsen [son of Gorm], King of Denmark in the 10th century
- 2001: first consumer products for mass market, spec. version 1.1 released
- 2005: 5 million chips / week
- 2014: Cumulative product shipments appr. 3 billion

Special Interest Group
- Original founding members: Ericsson, Intel, IBM, Nokia, Toshiba
- Added promoters: 3Com, Agere (was: Lucent), Microsoft, Motorola
- > 10000 members
- Common specification and certification of products
Characteristics

2.4 GHz ISM band, 79 (23) RF channels, 1 MHz carrier spacing
- Channel 0: 2402 MHz … channel 78: 2480 MHz
- GFSK modulation (1Mbit/s), 1-100 mW transmit power
- $\pi/4$-DQPSK (2Mbit/s) and 8DPSK (3Mbit/s) for Bluetooth 2.0+EDR

FHSS and TDD
- Frequency hopping with 1600 hops/s
- Hopping sequence in a pseudo random fashion, determined by a master
- Time division duplex for send/receive separation

Voice link – SCO (Synchronous Connection Oriented)
- FEC (forward error correction), no retransmission, 64 kbit/s duplex, point-to-point, circuit switched

Data link – ACL (Asynchronous ConnectionLess)
- Asynchronous, fast acknowledge, point-to-multipoint, up to 433.9 kbit/s symmetric or 723.2/57.6 kbit/s asymmetric, packet switched

Topology
- Overlapping piconets (stars) forming a scatternet
Piconet

- Collection of devices connected in an ad hoc fashion

- One unit acts as master and the others as slaves for the lifetime of the piconet

- Master determines hopping pattern, slaves have to synchronize

- Each piconet has a unique hopping pattern

- Participation in a piconet = synchronization to hopping sequence

- Each piconet has one master and up to 7 simultaneous slaves (> 200 could be parked)
Forming a piconet

- All devices in a piconet hop together
 - Master gives slaves its clock and device ID
 - Hopping pattern: determined by device ID (48 bit, unique worldwide)
 - Phase in hopping pattern determined by clock

- Addressing
 - Active Member Address (AMA, 3 bit)
 - Parked Member Address (PMA, 8 bit)
Scatternet

- Linking of multiple co-located piconets through the sharing of common master or slave devices
 - Devices can be slave in one piconet and master of another
- Communication between piconets
 - Devices jumping back and forth between the piconets

Piconets (each with a capacity of < 1 Mbit/s)

M=Master
S=Slave
P=Parked
SB=Standby
Frequency hopping
Bluetooth protocol stack

Audio apps. NW apps. vCal/vCard telephony apps. mgmmt. apps.
 TCP/UDP OBEX AT modem commands TCS BIN SDP
 IP
 BNEP PPP

RFCOMM (serial line interface)

Logical Link Control and Adaptation Protocol (L2CAP)

Link Manager

Baseband

Radio

AT: attention sequence
OBEX: object exchange
TCS BIN: telephony control protocol specification – binary
BNEP: Bluetooth network encapsulation protocol

SDP: service discovery protocol
RFCOMM: radio frequency comm.
Basic access scheme

- 79 hops (in Japan, Spain, and France 23) at a 1 Mhz spacing
- dwel time of 625 μs
- master determines the hopping sequence
- TDD

\[f(k) \quad f(k+1) \quad f(k+2) \]

\[A \quad B \]

\[625 \, \mu s \]
Frequency selection during data transmission

625 µs

$\begin{align*}
M_1 & \quad S_1 & \quad M_2 & \quad S_2 & \quad M_3 & \quad S_3 & \quad M_4 \\
M_5 & \quad S_5 & \quad M_6 & \quad S_6 & \quad M_7 & \quad S_7 & \quad M_8
\end{align*}$
Baseband

- Piconet/channel definition
- Low-level packet definition
 - Access code
 - Channel, device access, e.g., derived from master
 - Packet header
 - 1/3-FEC, active member address (broadcast + 7 slaves), link type, alternating bit ARQ/SEQ, checksum

```
68(72)  54  0-2745  bits

<table>
<thead>
<tr>
<th>access code</th>
<th>packet header</th>
<th>payload</th>
</tr>
</thead>
</table>

4  64  (4)

<table>
<thead>
<tr>
<th>preamble</th>
<th>sync.</th>
<th>(trailer)</th>
<th>AM address</th>
<th>type</th>
<th>flow</th>
<th>ARQN</th>
<th>SEQN</th>
<th>HEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3  4  1  1  1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8 bits
```
Baseband data rates

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 slot</td>
<td>DM1</td>
<td>1</td>
<td>0-17</td>
<td>2/3</td>
<td>yes</td>
<td>108.8</td>
</tr>
<tr>
<td></td>
<td>DH1</td>
<td>1</td>
<td>0-27</td>
<td>no</td>
<td>yes</td>
<td>172.8</td>
</tr>
<tr>
<td></td>
<td>DM3</td>
<td>2</td>
<td>0-121</td>
<td>2/3</td>
<td>yes</td>
<td>258.1</td>
</tr>
<tr>
<td></td>
<td>DH3</td>
<td>2</td>
<td>0-183</td>
<td>no</td>
<td>yes</td>
<td>390.4</td>
</tr>
<tr>
<td></td>
<td>DM5</td>
<td>2</td>
<td>0-224</td>
<td>2/3</td>
<td>yes</td>
<td>286.7</td>
</tr>
<tr>
<td></td>
<td>DH5</td>
<td>2</td>
<td>0-339</td>
<td>no</td>
<td>yes</td>
<td>433.9</td>
</tr>
<tr>
<td></td>
<td>AUX1</td>
<td>1</td>
<td>0-29</td>
<td>no</td>
<td>no</td>
<td>185.6</td>
</tr>
<tr>
<td></td>
<td>HV1</td>
<td>na</td>
<td>10</td>
<td>1/3</td>
<td>no</td>
<td>64.0</td>
</tr>
<tr>
<td></td>
<td>HV2</td>
<td>na</td>
<td>20</td>
<td>2/3</td>
<td>no</td>
<td>64.0</td>
</tr>
<tr>
<td></td>
<td>HV3</td>
<td>na</td>
<td>30</td>
<td>no</td>
<td>no</td>
<td>64.0</td>
</tr>
<tr>
<td></td>
<td>DV</td>
<td>1 D</td>
<td>10+(0-9) D</td>
<td>2/3 D yes D</td>
<td>64.0+57.6 D</td>
<td></td>
</tr>
<tr>
<td>SCO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data Medium/High rate, High-quality Voice, Data and Voice
SCO payload types

<table>
<thead>
<tr>
<th>Type</th>
<th>Fields</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV1</td>
<td>payload</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>audio</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>FEC</td>
<td>20</td>
</tr>
<tr>
<td>HV2</td>
<td>audio</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>FEC</td>
<td>10</td>
</tr>
<tr>
<td>HV3</td>
<td>audio</td>
<td>30</td>
</tr>
<tr>
<td>DV</td>
<td>audio</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>header</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>payload</td>
<td>0-9</td>
</tr>
<tr>
<td></td>
<td>2/3 FEC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CRC</td>
<td>2</td>
</tr>
</tbody>
</table>

(bytes)
ACL Payload types

<table>
<thead>
<tr>
<th>Type</th>
<th>Header</th>
<th>Payload 1</th>
<th>Payload 2</th>
<th>Payload 3</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM1</td>
<td>1</td>
<td>0-17</td>
<td>2/3 FEC</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>DH1</td>
<td>1</td>
<td>0-27</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>DM3</td>
<td>2</td>
<td>0-121</td>
<td>2/3 FEC</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>DH3</td>
<td>2</td>
<td>0-183</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>DM5</td>
<td>2</td>
<td>0-224</td>
<td>2/3 FEC</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>DH5</td>
<td>2</td>
<td>0-339</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>AUX1</td>
<td>1</td>
<td>0-29</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Units in bytes)
Baseband link types

- Polling-based TDD packet transmission
 - 625µs slots, master polls slaves
- SCO (Synchronous Connection Oriented) – Voice
 - Periodic single slot packet assignment, 64 kbit/s full-duplex, point-to-point
- ACL (Asynchronous ConnectionLess) – Data
 - Variable packet size (1, 3, 5 slots), asymmetric bandwidth, point-to-multipoint
Robustness

- Slow frequency hopping with hopping patterns determined by a master
 - Protection from interference on certain frequencies
 - Separation from other piconets (FH Spread Spectrum)
- Retransmission
 - ACL only, very fast
- Forward Error Correction
 - SCO and ACL

Error in payload (not header!)

Diagram:
- MASTER
- SLAVE 1
- SLAVE 2

Symbols:
- NAK
- ACK
Link manager protocol

- Authentication, pairing and encryption
- Synchronization
- Capability negotiation
- Quality of service negotiation
- Power control
- State and transmission mode change
Baseband states of a Bluetooth device

- **Standby**: do nothing
- **Inquire**: search for other devices
- **Page**: connect to a specific device
- **Connected**: participate in a piconet
- **Park**: release AMA, get PMA
- **Sniff**: listen periodically, not each slot
- **Hold**: stop ACL, SCO still possible, possibly participate in another piconet
L2CAP - Logical Link Control and Adaptation Protocol

- Simple data link protocol on top of baseband
- Connection oriented, connectionless, and signalling channels
- Protocol multiplexing
 - RFCOMM, SDP, telephony control
- Segmentation & reassembly
 - Up to 64kbyte user data, 16 bit CRC used from baseband
- QoS flow specification per channel
 - Follows RFC 1363, specifies delay, jitter, bursts, bandwidth
- Group abstraction
 - Create/close group, add/remove member
L2CAP logical channels

Slave

L2CAP

baseband

2

d

1

signalling

ACL

connectionless

connection-oriented

Master

L2CAP

baseband

1

d

d

d

Slave

L2CAP

baseband

1

d

d

2
L2CAP packet formats

Connectionless PDU

<table>
<thead>
<tr>
<th>length</th>
<th>CID=2</th>
<th>PSM</th>
<th>payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connection-oriented PDU

<table>
<thead>
<tr>
<th>length</th>
<th>CID</th>
<th>payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signalling command PDU

<table>
<thead>
<tr>
<th>length</th>
<th>CID=1</th>
<th>One or more commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Code: 1 byte
- ID: 1 byte
- Length: 2 bytes
- Data: ≥0 bytes
Security

PIN (1-16 byte) → E_2 → link key (128 bit) → E_3 → encryption key (128 bit) → Keystream generator → payload key → Ciphering → Cipher data → Data

User input (initialization) → Pairing

Authentication key generation (possibly permanent storage)

Authentication

Encryption key generation (temporary storage) → E_2 → link key (128 bit) → E_3 → encryption key (128 bit) → Keystream generator → payload key → Ciphering → Cipher data → Data

PIN (1-16 byte)
SDP – Service Discovery Protocol

- Inquiry/response protocol for discovering services
 - Searching for and browsing services in radio proximity
 - Adapted to the highly dynamic environment
 - Can be complemented by others like SLP, Jini, Salutation, …
 - Defines discovery only, not the usage of services
 - Caching of discovered services
 - Gradual discovery
Profiles

Represent default solutions for a certain usage model
- Vertical slice through the protocol stack
- Basis for interoperability
- Generic Access Profile
- Service Discovery Application Profile
- Cordless Telephony Profile
- Intercom Profile
- Serial Port Profile
- Headset Profile
- Dial-up Networking Profile
- Fax Profile
- LAN Access Profile
- Generic Object Exchange Profile
- Object Push Profile
- File Transfer Profile
- Synchronization Profile

Additional Profiles
- Advanced Audio Distribution
- PAN
- Audio Video Remote Control
- Basic Printing
- Basic Imaging
- Extended Service Discovery
- Generic Audio Video Distribution
- Hands Free
- Hardcopy Cable Replacement
Example use of Bluetooth Profiles

<table>
<thead>
<tr>
<th>Device</th>
<th>Hands-Free Profile (HFP 1.6)</th>
<th>Phone Book Access Profile (PBAP)</th>
<th>Advanced Audio Distribution Profile (A2DP)</th>
<th>Audio/Video Remote Control Profile (AVRCP 1.4)</th>
<th>Personal Area Network Profile (PAN)</th>
<th>Human Interface Device Profile (HID)</th>
<th>Message Access Profile (MAP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>iPhone 4 and later</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>iPhone 3GS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>iPhone 3G</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Original iPhone</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>iPad 2 and later</td>
<td>✓</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>iPad (1st generation)</td>
<td>–</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>iPod touch (4th generation and later)</td>
<td>✓</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>iPod touch (2nd and 3rd generation)</td>
<td>–</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
</tr>
</tbody>
</table>
Bluetooth versions

Bluetooth 1.1
- also IEEE Standard 802.15.1-2002
- initial stable commercial standard

Bluetooth 1.2
- also IEEE Standard 802.15.1-2005
- eSCO (extended SCO): variable bitrates, retransmission for SCO
- Faster connection & discovery
- AFH (adaptive frequency hopping) to avoid interference

Bluetooth 2.0 + EDR (2004, no more IEEE)
- EDR (enhanced date rate) of 3.0 Mbit/s (2.1 Mbit/s net) for ACL and eSCO
 using higher order modulation (GPSK → DQPSK / 8DPSK)
- lower power consumption due to shorter duty cycle

Bluetooth 2.1 + EDR (2007)
- better pairing support, e.g. using NFC
- improved security

Bluetooth 3.0 + HS (2009)
- Bluetooth 2.1 + EDR + IEEE 802.11a/g = 54 Mbit/s

Bluetooth 4.0 (2010)
- Classic Bluetooth + Bluetooth HS + Bluetooth Low Energy

Bluetooth 4.1 (2013)
Outline of Lecture 10

- Bluetooth
 - General characteristics
 - Piconets & scatternets
 - Basic Access scheme
 - Baseband (MAC layer)
 - Higher layer protocols
 - Profiles and Versions

- Zigbee
 - Zigbee vs. IEEE 802.15.4
 - Architecture & Topologies
 - IEEE 802.15.4 MAC layer
Zigbee / IEEE 802.15-4 Background

- Low-Rate, Very Low-Power
- IEEE 802.15.4 for PHY and MAC
- Zigbee specifies higher layers

- Low data rate solution with multi-month to multi-year battery life
- very low complexity
- range 10 - 75 meter
- Potential applications are sensors, interactive toys, smart badges, remote controls, and home automation
ZigBee

Relation to 802.15.4 similar to Bluetooth / 802.15.1

Pushed by Chipcon (now TI), Ember, Freescale (Motorola), Honeywell, Mitsubishi, Motorola, Philips, Samsung…

More than 260 members
- about 15 promoters, 133 participants, 111 adopters
- must be member to commercially use ZigBee spec

ZigBee platforms comprise
- IEEE 802.15.4 for layers 1 and 2
- ZigBee protocol stack up to the applications
802.15.4 Characteristics

- 16 channels in the 2.4 GHz ISM band (worldwide), 30 (was 10) channels in the 915 MHz US ISM band and 1 channel in the European 868 MHz band
- Various Physical Layers
- Data rates of 20-250 kbit/s, latency down to 15 ms
- Data packets up to 127 bytes
- Master-Slave or Peer-to-Peer operation
- Up to 254 devices or 64516 simpler nodes
- CSMA/CA channel access, slotted (beacon) or unslotted
- Automatic network establishment by a PAN (Personal Area Network) coordinator
IEEE 802.15.4 Architecture

- Upper Layers
- 802.2 LLC
- SSCS
- MCPS-SAP
- MLME-SAP
- MAC
- PD-SAP
- PLME-SAP
- PHY
- Physical Medium
IEEE 802.15.4 Topologies

Topologies:
- Star N.T
- Mesh N.T
- Tree N.T
- Cluster Tree N.T (only 802.15.4, not Zigbee)

Modes of operation:
- Beacon-enabled
- Non-beacon-enabled

MAC frames
- **Beacon-enabled:** 4 frame types
 - Beacon frame
 - Data frame
 - Acknowledgment frame
 - MAC command frame

- **Non-beacon-enabled:** 2 frame types
 - Data frame
 - Acknowledgment frame

Devices:
- **Reduced Function Device**
- **Full Function Device (FFD)**
- **Router** (role of FFD)
- **PAN Coordinator** (role of FFD)
IEEE 802.15.4 Basic MAC characteristics

Beacon-enabled networks (star / tree):
- use of a superframe structure based on beacons
- slotted CSMA-CA
- Guaranteed time slots (GTS) in a (contention-free period) for time critical applications
- allows for low duty cycle operation
- beacon interval can range from 15 ms to 786 s

Non-beacon enabled networks (only peer-to-peer):
- no coordinator
- (Un-slotted) CSMA-CA
IEEE 802.15.4 Beacon-enabled MAC

- **SD**: Superframe Duration
- **BI**: Beacon Interval

CAP: Contention Access Period

CFP: Contention Free Period