Eenvoudige modellen en Big Data beter dan slimme modellen

Eenvoudige modellen en Big Data troeven slimme modellen af

Big Data – of het beter allitererende “Grote Gegevens” – is een term die sinds het begin van deze eeuw wordt gebruikt om gegevensverzamelingen aan te duiden die moeilijk verwerkt konden worden met behulp van de software van die tijd, verzamelingen van vele terabytes of petabytes in grootte. Technieken om zulke enorme verzamelingen gegevens te kunnen verwerken en analyseren werden met name ontwikkeld door Google. Het uitgangspunt van Google: Zet heel veel goedkope machines bij elkaar in grote datacentra, en gebruik slimme gereedschappen zodat applicatieontwikkelaars en gegevensanalisten het hele datacentrum kunnen gebruiken voor hun gegevensanalyses. Het datacentrum is de nieuwe computer! De slimme gereedschappen van Google raken veel kernelementen van de Informatica: bestandssystemen (Google File System), nieuwe programmeerparadigma’s (MapReduce), nieuwe programmeertalen (bijvoorbeeld Sawzall) en nieuwe aanpakken voor het beheren van gegevens (BigTable), allemaal ontwikkeld om grote gegevensverzamelingen gemakkelijk toegankelijk te maken. Deze technieken zijn inmiddels ook beschikbaar in open source varianten. De bekendste, Hadoop, werd voor een belangrijk deel ontwikkeld bij Googles concurrent Yahoo. Aan de Universiteit Twente worden de technieken sinds 2009 onderwezen in het masterprogramma Computer Science. Nu we in staat zijn om te trainen op grootschalige gegevensverzamelingen doet zich het volgende fenomeen voor: Eenvoudige modellen getraind met grote gegevens troeven complexe modellen op basis van minder gegevens af…

[Lees verder]

Verschenen in STAtOR 14(3-4), Vereniging voor Statistiek en Operationele Research

Comments are closed.