
Exercises Discrete Optimization, Utrecht 2012

(to be handed in one week after each lecture, deadlines are not too strict)

2.1 Explain why O(m logm) = O(m log n) if n and m are the number of nodes
resp. edges of a simple graph.

2.2 Solve the problem of finding “min cost spanning trees” of a given graph
G = (E, V ) when the cost function is

c(T ) =

√∑
ij∈T

c2ij

for spanning tree T ⊆ E.

2.3 What about the problem of computing a spanning tree with maximum
cost (relative to given edge costs c : E → R)?

2.4 Let T be a tree with edge weights. For two nodes i and j of T , let αij
denote the smallest weight of an edge on the (unique) path from i to j.
Describe an algorithm for computing all αij in O(n2).
(Here, as usual, n denotes the number of nodes.)

2.5 Let G = (V,E) be a graph with edge weights c : E → R and let T ∗ be
a corresponding min cost spanning tree. For fixed e ∈ E, let [c, c] denote
the largest interval such that T ∗ remains optimal if ce is changed to any
other value c ∈ [c, c]. Describe an efficient algorithm for computing [c, c].
(Hint: Distinguish between e ∈ T ∗ and e ∈ E\T ∗.)

2.6 A 1− tree in G = (V,E) is a subgraph of G consisting of a spanning
tree plus one additional edge. Show that, relative to given edge costs
c : E → R, a min cost 1− tree can be obtained by first computing a min
cost spanning tree and then adding the least cost non-tree edge.

3.1 Verify the details in Example 3.5 (matching matroids). What are the
consequences for matching problems with weight functions of type wij =
pi + pj for certain p : V → R?

3.2 Show that if B ⊆ 2S is the set of bases of some matroid M , then so is
B∗ = {S\B|B ∈ B}. (The corresponding matroid M∗ is the dual of M .)

3.3 Let r : 2S → Z+ be the rank function of a matroid on S = {1, ..., n}. Let
c1 ≥ ... ≥ cn ≥ 0. Show that the linear program

max{cTx | x(R) ≤ r(R) ∀R ⊆ S, x ≥ 0}

can be solved “greedily” by starting with x = 0, then raising x1 until some
constraint x(R) ≤ r(R) gets tight, then raising x2 until some constraint
x(R′) ≤ r(R′) gets tight, etc.
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3.4 Let S = {1, 2, 3, 4} and let M be the matroid whose base set B consists of
all 2-element subsets of S. Is M graphic, linear, or a matching matroid?

4.1 Show that, for arbitrary cost functions, the problem of finding shortest
simple s− t paths is as difficult as solving TSP.

4.2 Formulate an (integer) linear program for computing shortest s− t paths.
(you may assume that all costs are non-negative.)

4.3 Show by means of an example that Dijkstra may fail to compute a shortest
s− t path if negative cost values are allowed.

4.4 Let G = (V,E) be a graph with edge costs c : E → R. Show that the
length of a shortest s− t path is given by

max{dt − ds | dj ≤ di + cij ∀ij ∈ E}.

5.1 Given a digraph G = (V,E), define the arc connectivity as the minimum
number of edges we need to remove such that the resulting graph is dis-
connected in the sense that it contains a pair (i, j) of vertices for which
there is no directed i− j path. Similarly, the node connectivity is defined
to be the minimum number of nodes to be removed in order to obtain
a disconnected subdigraph. How can the node resp. arc connectivity be
computed efficiently?

5.2 Let G = (V,E) be a directed graph with edge weights. Show: If δ(R1) ⊆ E
and δ(R2) ⊆ E are min s− t cuts, then so are δ(R1 ∩R2) and δ(R1 ∪R2).

5.3 If augmenting paths with maximum residual capacity are chosen for flow
augmentation in each step, may it happen that the increase in flow value
in some step is larger than in the preceeding step?

5.4 If augmenting paths are chosen that contain as few reverse arcs as possible,
is the corresponding flow augmentation procedure efficient?

6.1 Suppose that we are given a connected digraph G whose underlying graph
is eulerian. We seek to reverse some arcs in G such that the resulting
digraph has a directed eulerian tour. If cuv is the cost of “reversing” arc
uv, i.e., replacing uv by vu, show that finding an optimal (i.e. min cost)set
of arcs to be reversed can be formulated as a min cost flow problem.
(Hint: Lower capacity bounds)
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6.2 Consider the network
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where each arc is labeled (cij , uij) and node balances are as indicated
(nodes d, p and r have balance zero). Find a corresponding min cost flow
and prove optimality by specifying corresponding node potentials π and
reduced costs cπ.

6.3 Search for an efficient algorithm solving the min mean cycle problem, i.e.,
min w(C)/|C|, for given rational edge weights w : E → R.

7.1 Construct a maximum matching in the graph shown below
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7.2 A line of a matrix is a row or a column of the matrix. Show that the
minimum number of lines containing all the ones of a (0, 1)-matrix equals
the maximum number of 1’s, no two of which are in the same line.
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7.3 Two people play a game on a graph G by alternately selecting distinct
vertices v0, v1, v2, ... such that, for i > 0, vi is adjacent to vi−1. The last
player able to select a vertex wins. Show that the first player has a win-
ning strategy if and only if G has no perfect matching.

7.4 (“stable marriages”) There are n men and n women. Each man has a
certain ranking, i.e., an ordering π = (π1, ..., πn) of the women, meaning
that he prefers woman πi to woman πi+1. Similarly, every woman has a
ranking µ = (µ1, ..., µn) of the men. An assignment (“marriage”) of the
men to the women is stable if there is no pair (i, j) such that man i and
woman j prefer each other to their respective partners. Search (the liter-
ature) for a procedure to construct stable matchings, describe it shortly
and apply it to exhibit a stable matching for n = 5 with preference lists as
follows for men: (3,5,2,1,4),(4,3,5,1,2), (4,1,3,2,5), (1,3,2,5,4), (4,2,3,1,5)
and women: (5,4,3,1,2), (5,1,3,2,4), 5,4,1,3,2), (5,3,1,2,4) and (5,3,2,1,4).

8.1 Prove Prop. 8.1 by LP duality.

8.2 Let P,Q ⊆ Rn be polytopes. Show that

P −Q := {p− q|p ∈ P, q ∈ Q}

is a polytope as well.

8.3 Let G = (V,E) be an (undirected) graph and let A ∈ RV×E be its node-
edge incidence matrix. Is A totally unimodular?

8.4 Let I1, ..., In be closed (and bounded) intervals on the real line. Show that
the problem of finding a maximum number of pairwise disjoint intervals
Ij can be solved by Linear Programming.

9.1 Show how an efficient algorithm A for solving the decision version of VC
(“Given graph G and integer k, does there exist a vertex cover of size
at most k?”) can be used to design an efficient algorithm for solving the
minimum vertex cover problem (“Given G, find a min size vertex cover!”).

9.2 Explain why LP-feasibility (“Given (A, b), ∃x with Ax ≤ b?”) is in NP ∩
co-NP.

9.3 Show that SAT � 3-SAT.

9.4 Give an explicit reduction showing that VC � SAT

10.1 The bin packing problem asks to pack n items of size a1, ..., an ≤ 1 into the
least possible number of bins of size 1 each (in such a way that the total
size of items packed into a bin does not exceed 1). What about (F)PTAS
for solving this problem?
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10.2 Consider the multiobjective version of TSP: Given a graph G with edge
weights ce ≥ 0 (cost) and le ≥ 0 (length). Describe a 3−approximation
algorithm, exhibiting a tour whose cost and length are at most 3 times
the optimum cost resp. length.

10.3 Prove or disprove: Given graph G with edge costs ce ≥ 0 and an even size
subset W of the nodes, the cost of a min cost perfect matching in G[W ]
is bounded from above by the cost of a min cost perfect matching in G.

10.4 Consider the directed version of TSP (“Given a digraph G with non-
negative edge weights, find a shortest directed tour visiting all nodes”),
assuming that the triangle inequality holds. Find a O(log n) approxima-
tion algorithm for this problem.
[Hint: If n, the number of nodes is a power of two, apply successive min
cost perfect matching.]
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