
'

&

$

%

Formal Methods and

Software Engineering

1

'

&

$

%

Motivation

Last decades many technical/theoretical results

on Formal Methods (FM).

Still not widespreadly used in industry.

Main problems:

– Management attitude

– How to embed FM in Software Engineering ?

Viewpoint: (future) SE manager

'

&

$

%

Warning

The role of FM in SE is still largely an open

question...

– this lecture does not provide simple receipes

– ”checklist” of relevant issues

– managerial creativity needed for decisions !

Main sources:

• experiences reported in papers

• An International Survey of Industrial

Applications of Formal Methods (US Dept.

of Commerce)

'

&

$

%

Software Problem

Last 30 years: software crisis/affliction

Growing demands on software

(quantity/quality).

Big economic importance !

Still software production a craft, not an

engineering discipline. Result:

• development times long

• costs high

• quality low (e.g. many errors)

• management very difficult

Other engineering disciplines matured after a

long period of development.

Why not simply copy them ?

'

&

$

%

Software characteristics

Comparison with traditional engineering

disciplines:

Software is

Complex

– many different behaviours (cf. bridge,

engine)

Discontinuous

– small design error can have big

consequences: software is hard to predict

– impossible to provide ”design margins”

by ”overengineering”

'

&

$

%

Two counterarguments

Modular redundancy (multiple versions)

Controversial:

– same mistake might be replicated

– redundancy management software complex

Statistics

– quantification of errors difficult

– for small failure rates: experimental approach

infeasible

Need for correctness

Design errors eliminated by

• design process

• quality assurance

'

&

$

%

Software configuration

In the early days: fixation on ”working

program”

(still present in non–professionals !)

A working program is just a small part of the

software configuration, e.g. :

• production plan

• requirements specification

• design

• data structures

• test specification

• manual

'

&

$

%

Engineering ingredients

Cascade and incremental design conceptual

frameworks.

Actual practice can be more complicated !

Roughly the following ingredients always occur:

• requirements analysis

• planning

• design

• coding

• testing/validation

• correction/adaptation

What can be the role of formal methods ?

'

&

$

%

Why formal methods

A formal specification is

precise, unambiguous, structured, consistent,

abstract.

Benefits:

• facilitates precise recording/communication

of ideas

• enables mathematical analysis (e.g.

correctness)

• forces intellectual control of a problem

• bridges the gap between the ”informal

world” (requirements, design) and the code

• helps clarifying requirements

'

&

$

%

Important aspects

Some aspects that play a role:

• level of formality

• choice of formal method

• formal analysis

• tool support

• education

• organization of people and process

• organization of design stages

• selected components/properties

• transformational design

• testing

• software metrics

• maintenance

'

&

$

%

Managerial decisions

Decisions have to be taken for all these aspects!

A good project depends on the right decisions...

Unfortunately there is no formula or receipe –

the manager is important !

”A good manager can manage anything” –

probably not true for software engineering !

'

&

$

%

Levels of formality

1. Loose

– English, notations, diagrams and

mathematics combined

– analysis: arguments to persuade

reviewers

2. Formal

– specification language (syntax/semantics)

– analysis: by hand, but using explicit

axioms or proof rules

3. Mechanized

– specification language (syntax/semantics)

– analysis: with the help of automated

analysis tools

'

&

$

%

Selecting levels

Several possibilities:

– Going from ”informal” to some level of

formality in one step

• small, well-structured problems

• highly trained personnel

– increasing the level of formality

• loose level for exploring and discovering

• formal or mechanized level when problem is

clear

– using different levels at different stages or

even in parallel

• use loose level to communicate with customers

'

&

$

%

Choice of FM

Many different formalisms. Some types:

• model oriented (e.g. Z)

• algebraic (e.g. LOTOS)

• property oriented (e.g. logics)

• functional (e.g. ML, Miranda)

• concurrency (e.g. PROMELA, Petri Nets)

This classification is not exhaustive, and

formalisms can belong to different types.

'

&

$

%

Analysis tools

Tools that help in assessing the correctness of a

formal specification:

theorem provers/proof checkers

still much expertise is needed for using

them

model checking tools

check properties on a model of a system,

e.g. by exploring the state space

equivalence/preorder checkers

check whether two specifications are in

some correctness relation w.r.t. each other

(verification, validation)

simulators

for animating a specification, often

interactively (validation, checking

requirements)

'

&

$

%

Other FM tools

(apart from general CASE tools):

• syntax, type, and consistency checking

tools

• natural to formal language tools,

knowledge based support

• general analysis tools (e.g. for data flow

analysis)

• design support tools (e.g. performing

transformations)

• compilers (for coding, or translating into

another formalism)

• test generation, selection, and execution

tools

'

&

$

%

Tool decisions

• What tools are needed ?

• How to obtain them ?

– prototypes, academic research tools

– commercial tools

– own development

Tools are very important!

Tool availability may have crucial impact on

deciding upon a formalism.

(Still the surveys indicate that also without tools

good results can be obtained)

'

&

$

%

Human resources

Is there sufficient FM know-how in the project?

If not:

• extra training and education (see next

sheets)

• hire temporarily some external experts

(e.g. for theorem proving)

• make use of external consultants

• delegate activities to a third party (e.g.

validation/verification)

'

&

$

%

Personnel

An analysis should be made of who needs what

skills.

Example:

A specifier should be able to write a formal

spec.

A developer should be able to read a formal

spec in detail.

A verifier should be able to analyze a formal

spec.

A customer should be able to understand a

formal spec.

A reviewer should be able to understand

analysis results.

'

&

$

%

Education

Age and educational level are important !

(cf. 50 year old programmer with 27 year old

math PhD)

Some typical figures:

– discrete mathematics:

course several days

– formal specification (e.g. Z):

course 1 or 2 weeks

– tutoring/consultation in real projects:

attending workshops, hiring consultant during

early project phase

Experience shows that after learning a formal

specification language, a system developer needs

about three months of practice before his skills can

be used in real projects...

'

&

$

%

Planning

Important inputs:

• human resources

• computer/tools resources

• estimates, based on software metrics (see

further in this course)

Make use of standard SE planning techniques.

e.g. network planning (tools exist for producing

timeline charts and resourse allocation tables)

Important: risk analysis. What might go

wrong, and how do we act then?

'

&

$

%

Planning decisions (1)

• What parts of the system will be

verified/validated/tested ?

often impossible to assess the whole system;

then only those components that are critical or

hard to design

• What properties will be

verified/validated/tested ?

those that are critical, or can be effectively

dealt with

• What level of abstraction ?

too abstract: problems disappear

too concrete: assessment infeasible

'

&

$

%

Planning decisions (2)

• Who performs the assessment ?

the specifier, another team, external experts ?

• At what stage in the design process ?

the earlier a mistake is found, the less costly

its removal !

(J. Bowen: a defect removed at service time is

1000 times costlier then at the requirements

capturing phase)

'

&

$

%

Requirements capturing

Errors made at this stage most costly:

assessment very important !

Problems:

• Initially the requirements are always

informal, ”in the head of the customer”

important to involve customers in specification

assessment, e.g. by prototyping,

simulation/animation, natural language

paraphrasing

• For complex systems the requirements will

only gradually become clear

prototyping, incremental design (gradually

adding more functionality)

'

&

$

%

Cleanroom (1)

Cleanroom: software engineering method

(IBM)

Different teams:

specification – development – certification

Not tied to a specific formal method. Main

point: the development team does not perform

debugging or even compilation !

No unit testing !

Motivation:

• debugging often introduces new errors

(15% of the cases)

• these errors are deep and hard to find

'

&

$

%

Cleanroom (2)

Based on SQC: Statical Quality Control as

used in e.g. manufacturing industry

• In an assembly line, at several stations

statistical measurements are taken

• If any partial product fails, the entire

assembly line is stopped, to take care of the

production problem

This provides an incentive for doing accurate

work.

The idea sounds counterintuitive, but so did

touch typing (Dutch: blind typen) when it was

introduced !

'

&

$

%

Cleanroom (3)

Testing: statistical usage testing (based on

external system behaviour)

• specify usage probabilities

• derive from this randomly generated tests

• execute test cases, compute quality

measures

Quality too low: the process should be

improved.

– Success of Cleanroom seems largely based on

group responsibilities and discussion of

specifications

– Seems to yield improvements in cases where

quality is initially low.

Cleanroom not a definite answer to all problems,

but certainly contains some interesting ideas

'

&

$

%

Transformational design

Idea:

• start with a formal specification of the

requirements:

Initial Specification

• stepwisely transform this using correctness

preserving transformations:

Intermediate Specifications

• finally a formal specification is obtained,

that is structured in such a way that it is

easy to code:

Final Implementation

'

&

$

%

Transformational design (2)

Prerequisites:

– a specification formalism that allows

alternative synctactical structures

(specification styles)

– formal design transformations:

• serve a specific design goal

• preserve correctness (in some precise sense)

• are ideally tool supported

The transformational design approach will be

illustrated later in the context of process algebra.

'

&

$

%

Testing

Testing is an empirical validation method to

establish/estimate the correctness of

implementations and realizations.

• product testing:

validation of the realization wrt the final

implementation, which serves as the logical

blueprint for the realization.

• conformance testing:

validation of the realization wrt the initial

specification, which serves as the design

obligation (contract, standard) for the

realization.

• refinement testing:

validation of an executable implementation

wrt to its specification, i.e. an empirical

test of the validity of the correctness

relation concerned.

'

&

$

%

Testing Strategies

• black box testing:

Only the external behaviour of the object

(implementation or product) under test

can be observed. All internal structure

(e.g. the state space) is hidden.

This typically holds for conformance

testing.

• glass box testing:

Both the external behaviour and the

internal structure of the object under test

can be observed/ are known.

This typically holds for refinement testing.

• grey box testing:

The external behaviour and some of the

internal structure can observed/are known.

This typically holds for product testing.

'

&

$

%

FM and testing

Testing within FM framework can have the

following advantages:

• formal test validation

Does a test really test what it is intended for ?

Is it really a failure to fail the test ?

• test derivation algorithms

Manual test derivation time consuming; if the

design changes, the tests have to change too !

• precise evaluation of test outcomes

What has caused the error ? How to repair it ?

• test coverage measures

Quantification of how much of the system

behaviour has been covered by a test suite.

'

&

$

%

Software metrics

Quantative data about the design process

important for

• estimation (planning !)

• risk analysis

• scheduling

• tracking and controlling the process

Often such data are absent. It is then impossible

to assess the influence of adopting FM in the

design process !

Software metrics: great strategic importance !

Quantification makes sense only over a long

period of time.

'

&

$

%

Types of metrics

Code-oriented: Kilo Lines Of Code

E.g.:

productivity: KLOC/person-month

quality: defects/KLOC

costs: $/KLOC

documentation: pages/KLOC

problem: too much fixated on the final code !

Alternatives:

– function–oriented metrics

function points: number of inputs, outputs,

interfaces etc.

– feature points

general properties, e.g. communication,

distribution, reusability

both combined with heuristical weighing factors

'

&

$

%

Metrics and FM

– fomal specifications are more suitable for

quantification than natural language

specifications

– such a quantification could be automated

(incorporation in CASE environment)

– measurements can be made at an early stage

in the design trajectory, facilitating planning

– possibly more intelligent metrics can be

defined

Currently research on FM metrics is ongoing

example: structural metrics on Z specifications, e.g.

flowgraph–like metrics

'

&

$

%

Maintenance and FM

Maintenance benefits from FM:

– all components formally specified, so

modifications easier

– effects of changes on other components: redo

the verification/testing/validation and check

the effects

Retrospective specification (”backwards

engineering”):

• of just code: nearly impossible

• of informal specifications: difficult, as

informal specs usually structured in a

messy way (e.g. mixing levels of

abstraction) that hampers clear

formalization

'

&

$

%

Safety–critical systems

e.g. nuclear plants, train switching systems,

aviation systems

Benefits of FM here widely acknowledged.

Design errors should be absent at all costs...

• failure rates higher then 10−9 per hour can

no longer be empirically established; hard

to quantify software errors

• hardware failures cannot be avoided but

should be quantified

• the system should be designed such that a

reliability model can be constructed

FM are not restricted to safety–critical

systems! E.g.....

'

&

$

%

Embedded software

– controls consumer/industrial products

– usually resides in ROM

E.g. tv (1 Mg), micowave oven, shaver (8 K !),

car

Software usually not very complex or

safety–critical BUT:

• errors very costly; modifications costly

• errors can usually not be dealt with by

adjusting user behaviour

• high replication makes efficiency an

important economic issue

previsions are that the software need in this area

will grow explosively

Therefore: important role for FM !

'

&

$

%

Miscellaneous remarks

– coding (from a formal spec) is a

well–understood discipline and can often even

be reliably automated. (Still often managers

panic if at 2/3 of the project there is still no

code...)

– Performance analysis should be integrated

with FM as early in the design trajectory as

possible

– Reviewing important; formal assessment

results valuable input to review. (Let the

reviewer explain the design to the designers !)

– FM: analysis and specification stages usually

longer, later development stages much shorter

(since there will be less integration problems

and redevelopment)

'

&

$

%

Industrial acceptation

Starters:

• technology explorations (pilot projects,

research projects)

• recognition of difficulties

Boosters:

• difficult technical problems recognized

• successful applications

• contractual requirements

Years 1, 2, 3: exploring methods/applications

Vears 4, 5, 6: serious experimentation,

measurements, products

Years 7, 8, 9: developing appropriate

tools/processes around successful methods

'

&

$

%

Concluding remarks

• We have briefly touched many points

concerning FM and SE. Not exhaustive !

• Not yet very systematic; more research

needed (welcome !)

• Use these notes as a checklist. Be creative !

• Most important point: in the design

process, a good formal specification is much

more important than working final code !

'

&

$

%

