
'

&

$

%

FMSE: Lecture 1

The Specification Language Z:

Introduction

1

FMSE: Lecture 1 2'

&

$

%

Goals of Lecture 1

At the end of this lecture you should be able to:

• write down schemas for simple specification problems

• use quantors, sets and functions in schema invariants

• understand the role of types in Z

FMSE: Lecture 1 3'

&

$

%

The Z Notation

A formal method for software specification and design.

Ingredients:

• set theory and predicate calculus

• typing

• a schema notation for system states and operations

FMSE: Lecture 1 4'

&

$

%

An Example

Specify a library system where registered readers can borrow books

from the collection.

• no more than maxloan books can be borrowed per reader

• operations: issueing and returning books, registering books and

readers, queries (will be covered by the next lectures)

FMSE: Lecture 1 5'

&

$

%

The Library System

maxloan :
maxloan > 0

[BOOK ,READER]

Library

collection : �BOOK

readers : �READER

issued : BOOK � READER

dom issued ⊆ collection

ran issued ⊆ readers

∀ r : ran issued • #{b : BOOK | issued(b) = r} ≤ maxloan

FMSE: Lecture 1 6'

&

$

%

Axiomatic Descriptions

Z allows for the definition of properties of global constants by way

of axiomatic descriptions.

In our example, we wish to have a maximum to the number of

books a reader can borrow. We do not want to specify a value for

this maximum, only that it should be bigger than zero.

maxloan :

maxloan > 0

An axiomatic description consists of two parts:

• the declaration: maxloan is a nonnegative integer

• the predicate: maxloan must be bigger than 0.

FMSE: Lecture 1 7'

&

$

%

Basic Types

Declaration of the basic types, in our example:

[BOOK ,READER]

This postulates two basic types BOOK and READER without any

properties or structure.

Abstract, so representational issues are not addressed.

Do not try to create e.g. character strings or cartesian products of

e.g. names and id’s for BOOK or READER !

specification 6= programming

FMSE: Lecture 1 8'

&

$

%

State Schemas

• A schema has a name, here: Library

• above the line: a declaration of state variables (typed!)

– the values of these variables consitute the state of the

system

– these values can be initialised and changed by operations

• below the line: invariants

– must be true before and after all operations

– together characterize the admitted states

FMSE: Lecture 1 9'

&

$

%

Sets

Examples of sets in Z:

• , the set of natural numbers: 0, 1, 2, 3, . . . (predefined)

• 1, the set of strictly positive integers: 1, 2, 3, . . . (predefined)

• �, the set of integers: . . . ,−2,−1, 0, 1, 2, . . . (predefined)

• {1, 2, 3, 4, 5, 6} or 1..6 (example of two equivalent set

definitions)

• many other constructions (see book).

FMSE: Lecture 1 10'

&

$

%

Types

• Sets in Z are typed ; elements of the same set must have

the same type.

For example, the set {2, 4, red , yellow , 6} is NOT well-typed.

• Types enforce structure and discipline, and make it easier to

detect errors in a specification.

• Typechecking can be done automatically (see e.g. the tool

Z/Eves).

FMSE: Lecture 1 11'

&

$

%

Defining Types

• there is one predefined type: �
• using free type definitions, for example,

COLOR ::= red | green | blue | yellow | cyan | white | black

• using basic type definitions, for example,

[NAME]

• using the power set operator : ��, �COLOR, �NAME

• using the Cartesian product operator : �× �,
NAME × COLOR, etc.

FMSE: Lecture 1 12'

&

$

%

Declarations

• simple declarations of the form variable : set , for example:

i : �; d1, d2 : 1..6; signal : {red , yellow , green}

(What are the types of i , d1, d2 and signal?)

• constrained declarations, for example:

d1, d2 : 1..6

d1 + d2 = 7

signal : COLOR

signal ∈ {red , yellow , green}

FMSE: Lecture 1 13'

&

$

%

Pairs & binary relations

A binary relation is a set of pairs. Example:

PHONE == 0 . . 9999

phone : NAME # PHONE [or : �(NAME × PHONE)]

phone = {. . .

(aki , 4117),

(philip, 4107),

(doug , 4107),

(doug , 4136),

(philip, 0113),

(frank , 0110),

(frank , 6190),

. . .}

FMSE: Lecture 1 14'

&

$

%

Domain & Range

For a (binary) relation R : NAME # PHONE we define

• the domain of R, domR = {x : A | ∃ y : B • (x , y) ∈ R},

i.e. the set of all first elements of pairs in R.

• the range of R, ranR = {y : B | ∃ x : A • (x , y) ∈ R},

i.e. the set of all second elements of pairs in R.

Example:

dom phone = {. . . , aki , philip, doug , frank , . . .}

ran phone = {. . . , 4117, 4107, 4136, 0113, 0110, 6190, . . .}

FMSE: Lecture 1 15'

&

$

%

Functions

A function f : A#B is a relation such that each element of dom f

is linked to precisely one element f (x) of ran f , or more formally

∀ x : dom f • #{y : B | (x , y) ∈ f } = 1

• instead of f (x) we also write f x (function application)

• A� B denotes the set of all (partial) functions in A# B ,

enabling declarations of the form f : A� B .

We call such a function partial because it does not need to be

defined for all x ∈ A.

FMSE: Lecture 1 16'

&

$

%

Total Functions & Injections

• a function f : A� B is a total function if f (x) is defined for

every element of its source set A, i.e. if dom f = A.

We write A" B for the set of total functions in A� B .

• a function f : A� B is injective or one-to-one if different

elements of dom f are mapped to different elements or ran f , i.e.

∀ x1, x2 : dom f • x1 6= x2 ⇒ f (x1) 6= f (x2)

We write A� B for the set of injective functions in A� B

FMSE: Lecture 1 17'

&

$

%

Logical Connectives

Z has the following standard logical operators:

• negation: ¬ p (not p)

• conjuction: p ∧ q (p and q)

• disjuction: p ∨ q (p or q)

• implication: p ⇒ q (p implies q or if p then q)

• equivalence: p ⇔ q (p if and only if q)

FMSE: Lecture 1 18'

&

$

%

Quantifiers

Quantification introduces local variables into predicates:

• universal quantification:

∀ declaration • predicate (for all . . . it holds that . . .)

Example:

divides : �#�
∀ d , n : � • d divides n ⇔ n mod d = 0

• existential quantification:

∃ declaration • predicate (there exist . . . such that . . .)

Example: ∃ i : ns • i ≤ nmax

FMSE: Lecture 1 19'

&

$

%

Z and Boolean Types

Z does not have a built-in Boolean type !!!

So we do NOT write something like:

odd : �" BOOLEAN

∀n : � • odd(n) ⇔ ∃m : � • n = 2 ∗ m + 1

But we write:

odd : ��

∀n : � •

odd(n) ⇔ ∃m : � • n = 2 ∗ m + 1

FMSE: Lecture 1 20'

&

$

%

Set Comprehensions

Sets can be defined using the set comprehension format

{declaration | predicate}

We can define, for example:

• the set of non-zero numbers:

NONZERO == {i : � | i 6= 0}

• the point on a line with slope m and intercept b

line == {x , y : � | y = m ∗ x + b}

The elements of this set are the characteristic tuples of line

and have the form (x , y) with y = m ∗ x + b.

FMSE: Lecture 1 21'

&

$

%

An Alternative

A set-valued function for issued:

Library

. . .

issued : READER��BOOK

dom issued ⊆ readers

ran issued ⊆ � collection

∀ r : dom issued • #issued(r) ≤ maxloan

∀ r , r ′ : dom issued • r 6= r ′ ⇒ issued(r) ∩ issued(r ′) = �

FMSE: Lecture 1 22'

&

$

%

Another Alternative

instead of collection, record what is on the shelve:

Library

on shelve : �BOOK

readers : �READER

issued : BOOK � READER

dom issued ∩ on shelve = �
ran issued ⊆ readers

∀ r : ran issued • #{b : BOOK | issued(b) = r} ≤ maxloan

FMSE: Lecture 1 23'

&

$

%

Yet Another Alternative

Record both the collection and what is on the shelve:

Library

collection : �BOOK

on shelve : �BOOK

readers : �READER

issued : BOOK � READER

dom issued ∪ on shelve = collection

dom issued ∩ on shelve = �
ran issued ⊆ readers

∀ r : ran issued • #{b : BOOK | issued(b) = r} ≤ maxloan

Note that there is now redundancy (which can be convenient)

FMSE: Lecture 1 24'

&

$

%

Multiple Copies Of Books

[TITLE ,COPY ,READER]

title : COPY " TITLE

Library

collection : �COPY

readers : �READER

issued : COPY � READER

dom issued ⊆ collection

ran issued ⊆ readers

∀ r : ran issued • #{b : COPY | issued(b) = r} ≤ maxloan

FMSE: Lecture 1 25'

&

$

%

A Variant

We use collection for recording the relation between titles and

copies:

[TITLE ,COPY ,READER]

Library

collection : COPY � TITLE

readers : �READER

issued : COPY � READER

dom issued ⊆ dom collection

ran issued ⊆ readers

∀ r : ran issued • #{b : COPY | issued(b) = r} ≤ maxloan

FMSE: Lecture 1 26'

&

$

%

Conclusions

• There are in general many alternative solutions to a

specification problem.

• Which solution to choose is dependent on personal style and

preference.

• Which solution is chosen will affect how easy it is to specify

certain operations (see next lecture).

• Making a formal specification helps to think about a problem!

