FMSE: Lecture 2

The Specification Language Z:
Operations, Sequences

Goals of Lecture 2

At the end of this lecture you should be able to:

- specify the initial state of a system
- specify operations using schemas
- use sequences and their operations in schemas

Previous Lecture

In the previous lecture we looked at:

- axiomatic descriptions
- types
- schemas: declarations, invariants

```
The Library System
    maxloan : N
[TITLE,COPY, READER]
    title:COPY \longrightarrowTITLE
    Library
    collection : P COPY
    readers: P READER
    issued:COPY }->\mathrm{ READER
    dom issued \subseteq collection
    ran issued \subseteq readers
    \forallr: ran issued \bullet#{c:COPY | issued (c)=r}\leqmaxloan
```


Initialisation

We specify a scheme Init representing the initial state of the library.

- assume that initially the collection is empty, and there are no registrated readers
- other choices are possible, e.g. starting with a given collection of books
- all the invariants should hold in the initial state

First version of Init

```
Init
\[
\text { collection }: \mathbb{P} C O P Y
\]
\[
\text { readers }: \mathbb{P} R E A D E R
\]
\[
\text { issued }: C O P Y \mapsto R E A D E R
\]
\[
\text { collection }=\varnothing
\]
\[
\text { readers }=\varnothing
\]
\[
i s s u e d=\varnothing
\]
```

but we can do it in a nicer way...

Schema Import

a previously defined schema (called e.g. State can be used in the definition of another schema:

NewSchema
State
...
...

Semantics: all state variables and invariants of schema State become part of NewSchema

A schema import can expanded, i.e. all imported variables and invariants are written out (the tool Z/Eves can do this for you).
Init with Schema Import

Init
Library
collection $=\varnothing$
readers $=\varnothing$
issued $=\varnothing$
but it can be more concise...

Init: Final Version

$$
\begin{aligned}
& \text { Init } \\
& \text { Library }
\end{aligned}
$$

\qquad
collection $=\varnothing$
readers $=\varnothing$

The value of issued can be deduced with the help of the imported invariants!

Operations on the Library

- issue a copy to a reader
- return a book by a reader
- add/remove a copy to/from the collection
- enquire about the books a reader has on loan
- enquire which reader has a certain copy
- register/cancel a reader
- enquire which titles are in the collection
- enquire for a title which copies are available
- remove a reader who has disappeared, together with the books he has borrowed

Issueing a Copy

Issue
Δ Library
$r ?: R E A D E R$
c? : COPY
$r ? \in$ readers
$c ? \in$ collection $\backslash($ dom $i s s u e d)$
$\#\{c: C O P Y \mid \operatorname{issued}(c)=r ?\}<$ maxloan
issued $^{\prime}=$ issued $\cup\{(c ?, r ?)\}$
collection ${ }^{\prime}=$ collection
readers ${ }^{\prime}=$ readers

Conventions for Operations

- an unprimed (no ') variable: before the operation (old)
- a primed (') variable: after the operation (new)
examples:
collection' $=$ collection
issued $^{\prime}=$ issued $\cup\{(c ?, r ?)\}$
Note that $=$ is equality and not assignment!

Primed Schema Import

If State is a schema, we can also import State ${ }^{\prime}$: all state variables in declarations and invariants are primed.

We do this typically in operations:
OperationOnState \qquad
State
State ${ }^{\prime}$
...

Two Shorthands

Δ State is shorthand for the import of both State and State':

If a state variable v remains the same, we have to write $v^{\prime}=v$. What if all state variables reamain the same (e.g. in a query)?
Ξ State is like Δ State, but all state variables remain the same (so we import $v^{\prime}=v$ for all state variables v :

- OperationOnState EState

Input and Output

- input variables: end with "?",
e.g. input?
- output variables: end with "!",
e.g. output!
- need to be declared above the line of an operation schema
- can be constrained by predicates under the line, e.g.
$r ? \in$ readers
$c ? \in$ collection $\backslash($ dom $i s s u e d)$

Set Updates

Updates on a set set:

- adding an element new:
set $^{\prime}=$ set $\cup\{n e w\}$
- adding a set s :
set $\cup s$
- removing an element out:
$s e t^{\prime}=s e t \backslash\{o u t\}$
- removing a set s :

$$
s e t^{\prime}=s e t \backslash s
$$

Function updates

Updates on a function f :

- removing a pair (x, y) :

$$
f^{\prime}=f \backslash\{(x, y)\}
$$

- adding (x, y) for $x \notin \operatorname{dom} f$:

$$
f^{\prime}=f \cup\{(x, y)\}
$$

- changing the value of $f(x)$ into y :

$$
f^{\prime}=f \oplus\{(x, y)\}
$$

- if f and g are two functions of the same type, then $f \oplus g$ behaves like g on $\operatorname{dom} g$, and like f on $(\operatorname{dom} f) \backslash(\operatorname{dom} g)$

An Enquiry

Which are the books that a reader has on loan?
OnLoan
Ξ Library
r ? : READER
$c c!: \mathbb{P} C O P Y$
$r ? \in$ readers
$c c!=\{c: \operatorname{COPY} \mid \operatorname{issued}(c)=r ?\}$

Another Inquiry

Which copies are available for a certain title?

\[

\]

Removing a reader

A dubious reader cannot be traced anymore. Remove the reader and the books that he has in his posession.

Remove \qquad
Δ Library
r ?: readers
readers ${ }^{\prime}=$ readers $\backslash\{r ?\}$
collection ${ }^{\prime}=$ collection $\backslash\{c: C O P Y \mid$ issued $(c)=r ?\}$ issued $^{\prime}=$ issued $\backslash\{c: C O P Y, r: R E A D E R \mid r=r ?\}$

Sequences

If the order of elements is important we can use sequences

- sequences are written using \langle and \rangle, e.g. colorq $=\langle$ red, yellow, green, red \rangle, and empty $=\langle \rangle$
- a sequence s with elements S has type seq S, so colorq, empty : seq COLOR
- formally, a sequence s of type seq S is a function from $1 . . N$ to S for some N, with dom $s=1 . . N$ and ran s is the set of elements in the sequence
- we can write $\operatorname{colorq}(3)=$ green, $\#$ colorq $=4, \# e m p t y=0$

Note that sequences s, s^{\prime} are sets of pairs (sequencenr, element). But in general $s \cup s^{\prime}$ and $s \cap s^{\prime}$ are not sequences!

Concatenation of sequences

Suppose $s=\langle 3,7,1,2\rangle$ and $t=\langle 5,9\rangle$.
Then $s^{\wedge} t=\langle 3,7,1,2,5,9\rangle$.
Add element 8 to front of s :

$$
\langle 8\rangle \frown s(\text { and not } 8 \frown s!)
$$

Add element 8 to back of s :

$$
s^{\frown}\langle 8\rangle(\text { and not } s \frown 8!)
$$

Other Sequence Operations

Let $s=\langle 3,7,1,2\rangle$, then:

- head $s=3$
- tail $s=\langle 7,1,2\rangle$
- last $s=2$
- front $s=\langle 3,7,1\rangle$

Two useful sequence types:
$\operatorname{seq}_{1} X$: non-empty sequences with elements in X
iseq X : injective sequence (an element cannot occur more than once)

A Deletion Operation

Specify an operation that deletes an element $e l$? from an injective sequence of integers.

$$
\begin{aligned}
& \text { - Delete } \\
& s, s^{\prime}: \text { iseq } \mathbb{Z} \\
& e l ?: \mathbb{Z} \\
& s=l^{\complement}\langle e l ?\rangle \frown r \\
& s^{\prime}=l-r
\end{aligned}
$$

What if $e l ? \notin \operatorname{ran} s ?$ This is treated in the next lecture...

