FMSE: Lecture 2'

The Specification Language Z:

Operations, Sequences

FMSE: Lecture 2

-~

Goals of Lecture 2'

At the end of this lecture you should be able to:
e specify the initial state of a system
e specify operations using schemas

e use sequences and their operations in schemas

_

FMSE: Lecture 2

-~

‘ Previous Lecture '

In the previous lecture we looked at:
e axiomatic descriptions
e types

e schemas: declarations, invariants

_

FMSE: Lecture 2

/ ‘The Library System. \

‘ mazxloan : Ny

[TITLE, COPY, READER)]

- title : COPY — TITLE

__ Labrary
collection : P COPY

readers : P READER
1ssued : COPY — READER

dom zssued C collection

ran issued C readers
Vr :ranissued @ #{c: COPY |issued(c) = r} < mazloan

FMSE: Lecture 2

-~

Initialisation I

We specity a scheme Init representing the initial state of the library.

assume that initially the collection is empty, and there are no

registrated readers

other choices are possible, e.g. starting with a given collection

of books

all the invariants should hold in the initial state

/

FMSE: Lecture 2

-~

First version of Init'

__Init
collection : P COPY
readers : P READER
issued : COPY +— READER

collection =
readers = &

1ssued =

but we can do it in a nicer way...

_

FMSE: Lecture 2

/ Schema Import I \

a previously defined schema (called e.g. State can be used in the

definition of another schema:

__ NewSchema
State

Semantics: all state variables and invariants of schema State

become part of NewSchema

A schema import can expanded, i.e. all imported variables and

leariants are written out (the tool Z/Eves can do this for you). /

FMSE: Lecture 2

-~

‘Init with Schema Import'

 Inat

Library

collection =
readers = &

1ssued =

but it can be more concise...

_

FMSE: Lecture 2

-~

‘Init: Final Version'

__Inat
Library

collection =

readers = &

The value of issued can be deduced with the help of the imported

invariants!

_

/

FMSE: Lecture 2

-~

Operations on the Library' \

issue a copy to a reader

return a book by a reader

add /remove a copy to/from the collection
enquire about the books a reader has on loan
enquire which reader has a certain copy
register /cancel a reader

enquire which titles are in the collection
enquire for a title which copies are available

remove a reader who has disappeared, together with the books

he has borrowed /

10

FMSE: Lecture 2

-~

‘Issueing a Copy'

~ Issue

A Library
r?: READER
c?: COPY

r? € readers

c? € collection \ (dom issued)

#{c: COPY |issued(c) = r?} < mazloan
issued’ = issued U {(c?,17)}

collection” = collection

readers’ = readers

11

FMSE: Lecture 2

-~

Conventions for Operations'

e an unprimed (no ’) variable: before the operation (old)

e a primed (’) variable: after the operation (new)

examples:
collection” = collection
issued’ = issued U{(c?,17)}

Note that = is equality and not assignment!

_

12

FMSE: Lecture 2

-~

~

‘Primed Schema Import'

If State is a schema, we can also import State’ :

in declarations and invariants are primed.

We do this typically in operations:

__ OperationOnState

all state variables

State
State’

13

FMSE: Lecture 2

-~

Two Shorthands '

AState is shorthand for the import of both State and State”.

__ OperationOnState
AState

If a state variable v remains the same, we have to write v’ = v.

What if all state variables reamain the same (e.g. in a query)?

_

/

14

FMSE: Lecture 2

-~

=State is like AState, but all state variables remain the same (so

we import v/ = v for all state variables v:

__ OperationOnState
=State

~

15

FMSE: Lecture 2

-~

Input and Output'

input variables: end with "7 77,
e.g. imput?

77'77
°)

output variables: end with
e.g. output!

need to be declared above the line of an operation schema

can be constrained by predicates under the line, e.g.
r? € readers

c? € collection \ (dom issued)

16

FMSE: Lecture 2

-~

_

‘ Set Updates I

Updates on a set set:

e adding an element new:

set’ = set U {new}

e adding a set s:
set U s

e removing an element out:
set’ = set \ {out}

e removing a set s:

set’ = set \ s

17

FMSE: Lecture 2

-~

Function updates I

Updates on a function f:

e removing a pair (z,y):
f'=1\{(z,9);

e adding (z,y) for x ¢ dom f:
f'=ruilz,y)}

e changing the value of f(z) into y:
['=roi(z,y)}

e if f and ¢ are two functions of the same type, then f @ ¢
behaves like g on dom g, and like f on (dom f) \ (dom g)

/

18

FMSE: Lecture 2

-~

An Enquiry I

Which are the books that a reader has on loan?”

~_ OnLoan

= Library
r?: READER
cc! : P COPY

r? € readers
cc! = {c: COPY | issued(c) = r?}

FMSE: Lecture 2

-~

‘ Another Inquiry I

Which copies are available for a certain title?

_ Awailable

= Library
t? . TITLE
cc! : P COPY

cc! ={c: COPY | ¢ € collection \ (dom issued)
A title(c) = t7}

FMSE: Lecture 2

4 N
‘Removing a reader'

A dubious reader cannot be traced anymore. Remove the reader
and the books that he has in his posession.

~ Remowe
A Library

r? : readers

readers’ = readers \ {r?}
collection” = collection \ {c : COPY | issued(c) = r?}
issued’ = issued \ {c: COPY ,r: READER | r = r?}

_ /

FMSE: Lecture 2

-~

If the order of elements is important we can use sequences

e sequences are written using (and), e.g.

colorq = (red, yellow, green, red), and empty = ()

e a sequence s with elements S has type seq S, so
colorq, empty : seq COLOR

e formally, a sequence s of type seq S is a function from 1..V to
S for some N, with dom s = 1../N and ran s is the set of

elements in the sequence
e we can write colorq(3) = green, #colorq = 4, #empty = 0

Note that sequences s, s’ are sets of pairs (sequencenr, element).

‘ Sequences I \

KBut in general s U s’ and s N s’ are not sequences! /

22

FMSE: Lecture 2

-~

‘Concatenation of sequences'

Suppose s = (3,7,1,2) and ¢t = (5,9).
Then s~ t = (3,7,1,2,5,9).

Add element 8 to front of s:
(8) 7 s (and not 8 " s !)

Add element 8 to back of s:
s~ (8) (and not s ~ 8!

23

FMSE: Lecture 2

-~

Other Sequence Operations'

Let s = (3,7,1,2), then:
o head s =3
o tails = (7,1,2)
o last s =2
o fronts=(3,7,1)

Two useful sequence types:

seq; X: non-empty sequences with elements in X

iseq X: injective sequence (an element cannot occur more than
once)

_

~

/

24

FMSE: Lecture 2

-~

A Deletion Operation'

sequence of integers.

__Delete

s, s :iseq”
el? . 7/

s=1"(el?) " r

s'=1"r

What if el? ¢ ran s? This is treated in the next lecture...

_

~

Specify an operation that deletes an element el? from an injective

/

25

