
'

&

$

%

FMSE: Lecture 2

The Specification Language Z:

Operations, Sequences

1



FMSE: Lecture 2 2'

&

$

%

Goals of Lecture 2

At the end of this lecture you should be able to:

• specify the initial state of a system

• specify operations using schemas

• use sequences and their operations in schemas



FMSE: Lecture 2 3'

&

$

%

Previous Lecture

In the previous lecture we looked at:

• axiomatic descriptions

• types

• schemas: declarations, invariants



FMSE: Lecture 2 4'

&

$

%

The Library System

maxloan : 1

[TITLE ,COPY ,READER]

title : COPY " TITLE

Library

collection : �COPY

readers : �READER

issued : COPY � READER

dom issued ⊆ collection

ran issued ⊆ readers

∀ r : ran issued • #{c : COPY | issued(c) = r} ≤ maxloan



FMSE: Lecture 2 5'

&

$

%

Initialisation

We specify a scheme Init representing the initial state of the library.

• assume that initially the collection is empty, and there are no

registrated readers

• other choices are possible, e.g. starting with a given collection

of books

• all the invariants should hold in the initial state



FMSE: Lecture 2 6'

&

$

%

First version of Init

Init

collection : �COPY

readers : �READER

issued : COPY � READER

collection = �
readers = �

issued = �

but we can do it in a nicer way...



FMSE: Lecture 2 7'

&

$

%

Schema Import

a previously defined schema (called e.g. State can be used in the

definition of another schema:

NewSchema

State

. . .

. . .

Semantics: all state variables and invariants of schema State

become part of NewSchema

A schema import can expanded, i.e. all imported variables and

invariants are written out (the tool Z/Eves can do this for you).



FMSE: Lecture 2 8'

&

$

%

Init with Schema Import

Init

Library

collection = �
readers = �
issued = �

but it can be more concise...



FMSE: Lecture 2 9'

&

$

%

Init: Final Version

Init

Library

collection = �
readers = �

The value of issued can be deduced with the help of the imported

invariants!



FMSE: Lecture 2 10'

&

$

%

Operations on the Library

• issue a copy to a reader

• return a book by a reader

• add/remove a copy to/from the collection

• enquire about the books a reader has on loan

• enquire which reader has a certain copy

• register/cancel a reader

• enquire which titles are in the collection

• enquire for a title which copies are available

• remove a reader who has disappeared, together with the books

he has borrowed



FMSE: Lecture 2 11'

&

$

%

Issueing a Copy

Issue

∆Library

r? : READER

c? : COPY

r? ∈ readers

c? ∈ collection \ (dom issued)

#{c : COPY | issued(c) = r?} < maxloan

issued ′ = issued ∪ {(c?, r?)}

collection ′ = collection

readers ′ = readers



FMSE: Lecture 2 12'

&

$

%

Conventions for Operations

• an unprimed (no ’) variable: before the operation (old)

• a primed (’) variable: after the operation (new)

examples:

collection’ = collection

issued’ = issued ∪{(c?, r?)}

Note that = is equality and not assignment!



FMSE: Lecture 2 13'

&

$

%

Primed Schema Import

If State is a schema, we can also import State ′ : all state variables

in declarations and invariants are primed.

We do this typically in operations:

OperationOnState

State

State ′

. . .



FMSE: Lecture 2 14'

&

$

%

Two Shorthands

∆State is shorthand for the import of both State and State’:

OperationOnState

∆State

. . .

If a state variable v remains the same, we have to write v ′ = v .

What if all state variables reamain the same (e.g. in a query)?



FMSE: Lecture 2 15'

&

$

%

ΞState is like ∆State, but all state variables remain the same (so

we import v ′ = v for all state variables v :

OperationOnState

ΞState

. . .



FMSE: Lecture 2 16'

&

$

%

Input and Output

• input variables: end with ”?”,

e.g. input?

• output variables: end with ”!”,

e.g. output!

• need to be declared above the line of an operation schema

• can be constrained by predicates under the line, e.g.

r? ∈ readers

c? ∈ collection \ (dom issued)



FMSE: Lecture 2 17'

&

$

%

Set Updates

Updates on a set set:

• adding an element new:

set ′ = set ∪ {new}

• adding a set s:

set ∪ s

• removing an element out:

set ′ = set \ {out}

• removing a set s:

set ′ = set \ s



FMSE: Lecture 2 18'

&

$

%

Function updates

Updates on a function f :

• removing a pair (x , y):

f ′ = f \ {(x , y)}

• adding (x , y) for x 6∈ dom f :

f ′ = f ∪ {(x , y)}

• changing the value of f (x ) into y :

f ′ = f ⊕ {(x , y)}

• if f and g are two functions of the same type, then f ⊕ g

behaves like g on dom g , and like f on (dom f ) \ (dom g)



FMSE: Lecture 2 19'

&

$

%

An Enquiry

Which are the books that a reader has on loan?

OnLoan

ΞLibrary

r? : READER

cc! : �COPY

r? ∈ readers

cc! = {c : COPY | issued(c) = r?}



FMSE: Lecture 2 20'

&

$

%

Another Inquiry

Which copies are available for a certain title?

Available

ΞLibrary

t? : TITLE

cc! : �COPY

cc! = {c : COPY | c ∈ collection \ (dom issued)

∧ title(c) = t?}



FMSE: Lecture 2 21'

&

$

%

Removing a reader

A dubious reader cannot be traced anymore. Remove the reader

and the books that he has in his posession.

Remove

∆Library

r? : readers

readers ′ = readers \ {r?}

collection ′ = collection \ {c : COPY | issued(c) = r?}

issued ′ = issued \ {c : COPY , r : READER | r = r?}



FMSE: Lecture 2 22'

&

$

%

Sequences

If the order of elements is important we can use sequences

• sequences are written using 〈 and 〉, e.g.

colorq = 〈red , yellow , green, red〉, and empty = 〈〉

• a sequence s with elements S has type seqS , so

colorq , empty : seqCOLOR

• formally, a sequence s of type seqS is a function from 1..N to

S for some N , with dom s = 1..N and ran s is the set of

elements in the sequence

• we can write colorq(3) = green, #colorq = 4, #empty = 0

Note that sequences s, s ′ are sets of pairs (sequencenr, element).

But in general s ∪ s ′ and s ∩ s ′ are not sequences!



FMSE: Lecture 2 23'

&

$

%

Concatenation of sequences

Suppose s = 〈3, 7, 1, 2〉 and t = 〈5, 9〉.

Then s � t = 〈3, 7, 1, 2, 5, 9〉.

Add element 8 to front of s:

〈8〉 � s (and not 8 � s !)

Add element 8 to back of s:

s � 〈8〉 (and not s � 8 !)



FMSE: Lecture 2 24'

&

$

%

Other Sequence Operations

Let s = 〈3, 7, 1, 2〉, then:

• head s = 3

• tail s = 〈7, 1, 2〉

• last s = 2

• front s = 〈3, 7, 1〉

Two useful sequence types:

seq
1
X : non-empty sequences with elements in X

iseqX : injective sequence (an element cannot occur more than

once)



FMSE: Lecture 2 25'

&

$

%

A Deletion Operation

Specify an operation that deletes an element el? from an injective

sequence of integers.

Delete

s, s ′ : iseq�
el? : �

s = l � 〈el?〉 � r

s ′ = l � r

What if el? 6∈ ran s? This is treated in the next lecture...


