
'

&

$

%

FMSE: Lecture 3

The Specification Language Z:

Preconditions, Robustness, Composition

1

FMSE: Lecture 3 2'

&

$

%

Goals of Lecture 3

At the end of this lecture you should be able to:

• give the precondition of an operation

• understand the role of preconditions in the analysis of

specifications

• make operations robust

• use schema composition in structuring a specification

FMSE: Lecture 3 3'

&

$

%

The Library System

maxloan : 1

[TITLE ,COPY ,READER]

title : COPY " TITLE

Library

collection : �COPY

readers : �READER

issued : COPY � READER

dom issued ⊆ collection

ran issued ⊆ readers

∀ r : ran issued • #{c : COPY | issued(c) = r} ≤ maxloan

FMSE: Lecture 3 4'

&

$

%

Issueing a Copy

Issue

∆Library

r? : READER

c? : COPY

issued ′ = issued ∪ {(c?, r?)}

collection ′ = collection

readers ′ = readers

Note that the invariants should hold after this operation.

FMSE: Lecture 3 5'

&

$

%

When can this operation be applied?

Since we know that the invariants should be true after the

operation:

• dom issued ′ ⊆ collection ′ so c? ∈ collection

• ran issued ′ ⊆ readers ′ so r? ∈ readers

• #{c : COPY | issued ′(c) = r?} ≤ maxloan so

#{c : COPY | issued(c) = r?} < maxloan

• issued ′ is a function, so c? 6∈ dom issued

It is good practice to explicitly state these preconditions in the

operation schema! So:

FMSE: Lecture 3 6'

&

$

%

Issueing with explicit preconditions

Issue

∆Library

r? : READER

c? : COPY

r? ∈ readers

c? ∈ collection \ (dom issued)

#{c : COPY | issued(c) = r?} < maxloan

issued ′ = issued ∪ {(c?, r?)}

collection ′ = collection

readers ′ = readers

FMSE: Lecture 3 7'

&

$

%

Precondition: Formal Definition

It may be the case that not all preconditions are explicitly present

in a schema. Generally they must be calculated .

The precondition is the condition that has to be fulfilled in order

for the state after the operation to exist. So the precondition is

equivalent to saying: there is a valid state after the operation.

So the precondition of an operation schema Operation over a

system with state schema State is expressed by

∃ State ′ • Operation

FMSE: Lecture 3 8'

&

$

%

Calculating the Precondition

The precondition predicate can be evaluated by expansion and

simplification by logical calculation.

• this evaluation is often difficult and asks for experience in logic

• but it can be tool supported (see Z/EVES)

• we often calculate the preconditions by informal reasoning (like

in the library example)

FMSE: Lecture 3 9'

&

$

%

Consistency of Initialisation

Similar to the precondition of an operation we may want to prove

that for an initialisation Init of a system State, there is an initial

state that satisfies Init .

This is expressed by

∃ State • Init

Note: some people look at Init as an operation with only a final

state and no begin state. Therefore they import State ′ in Init ,

instead of State.

FMSE: Lecture 3 10'

&

$

%

Design Aspects of Preconditions

• explicit preconditions clarify operations

• preconditions can be found by tool supported analysis

If a state does not satisfy the precondition the effect of the

operation is not definied....

• a robust operation is always applicable (so has precondition

true).

• precondition analysis can check robustness

• robust operations often incorporate error conditions.

FMSE: Lecture 3 11'

&

$

%

Error Conditions

The precondition of Issue is not fulfilled when one of the following

error conditions holds:

• c? 6∈ collection \ dom issued

• r? 6∈ readers

• #{c : COPY | issued(c) = r?} = maxloan

We choose to leave the Library unchanged if any of these error

conditions hold.

(but with some fantasy you can think of alternative actions for each

error condition).

FMSE: Lecture 3 12'

&

$

%

Monolithic Robust Operation

Issue

∆Library

r? : READER

c? : COPY

(r? ∈ readers ∧ c? ∈ collection \ (dom issued) ∧

#{c : COPY | issued(c) = r?} < maxloan ∧

issued ′ = issued ∪ {(c?, r?)} ∧ collection ′ = collection

∧ readers ′ = readers) ∨ ((r? 6∈ readers ∨

c? 6∈ collection ∨ c? ∈ dom issued ∨

#{c : COPY | issued(c) = r?} = maxloan) ∧ issued ′ = issued

∧ collection ′ = collection ∧ readers ′ = readers)

FMSE: Lecture 3 13'

&

$

%

Monolithic Operation (cont’d)

The monolithic operation is ugly and big and difficult to read!

Is there a way to do it in a nicer and more structured way?

Yes: using schema composition.

(we deal with schema disjunction and conjunction)

FMSE: Lecture 3 14'

&

$

%

Schema Conjunction

Consider the schemas:

Quotient

n, d , q , r :
d 6= 0

n = q ∗ d + r

Remainder

r , d :

r < d

FMSE: Lecture 3 15'

&

$

%

Schema Conjunction (cont’d)

These may be combined using schema conjunction to form:

Division =̂ Quotient ∧ Remainder

What is the formal meaning of Division?

FMSE: Lecture 3 16'

&

$

%

Schema Conjunction: Semantics

The conjunction of two schemas is equivalent to a schema with:

• the union of the declarations of the two schemas, and

• the conjunction of the predicates of the two schemas.

An equivalent (expanded) definition of Division thus is:

Division

n, d , q , r :

d 6= 0

r < d

n = q ∗ d + r

FMSE: Lecture 3 17'

&

$

%

Schema Disjunction

The disjunction of two schemas is equivalent to a schema with:

• the union of the declarations of the two schemas, and

• the disjunction of the predicates of the two schemas.

Example: Given the following schema for divison by zero:

DivideByZero

d , q , r :

d = 0 ∧ q = 0 ∧ r = 0

the total operation for division is now given by:

T Division =̂ Division ∨ DivideByZero

FMSE: Lecture 3 18'

&

$

%

Schema Disjunction (cont’d)

An equivalent definition for T Division in a single schema (the

expanded version) is:

T Division

n, d , q , r :

(d 6= 0 ∧ r < d ∧ n = q ∗ d + r) ∨

(d = 0 ∧ q = 0 ∧ r = 0)

FMSE: Lecture 3 19'

&

$

%

A Structured Issue Operation

IssueTotal =̂ Issue ∨ WrongReader ∨

WrongCopy ∨ LimitReached

where

WrongReader

ΞLibrary

r? : READER

c? : COPY

r? 6∈ readers

FMSE: Lecture 3 20'

&

$

%

WrongCopy

ΞLibrary

r? : READER

c? : COPY

c? 6∈ collection \ dom issued

LimitReached

ΞLibrary

r? : READER

c? : COPY

#{c : COPY | issued(c) = r?} = maxloan

FMSE: Lecture 3 21'

&

$

%

Adding Messages

It is a good idea to add messages that explicitly show in which

situation we are.

For this Issue operation we define the following type:

MESSAGE ::= OK | unregistered reader |

copy unavailable | limit reached

(this is a global type, placed at the top of the specification)

FMSE: Lecture 3 22'

&

$

%

Adding Types (cont’d)

IssueTotal =̂ (Issue ∧ M ok) ∨

(WrongReader ∧ M wr) ∨

(WrongCopy ∧ M wc) ∨

(LimitReached ∧ M lr)

where

M ok

m! : MESSAGE

m! = ok

FMSE: Lecture 3 23'

&

$

%

M wr

m! : MESSAGE

m! = unregisterd reader

M wc

m! : MESSAGE

m! = copy unavailable

M lr

m! : MESSAGE

m! = limit reacheD

FMSE: Lecture 3 24'

&

$

%

Conclusions

• better give explicit preconditions for operations

• the precondition can be calculated

• a robust operation is always applicable, i.e. it has precondition

true

• operations can be made robust by incorporating error

conditions

• this can be done in a structured way using schema composition

• these structuring facilities are especially important for large

specifications

