## FMSE Exercise Course 2: Solutions

1. 

| Init |
| :--- |
| Library |
| $c c ?: \mathbb{P} C O P Y$ |
| collection $=c c ?$ <br> readers $=\varnothing$ |

2. In the given modelling $u$ has only $v$ in his possession, but not anymore the videos he had already. The correct modelling:
hasVideo $^{\prime}=$ hasVideo $\oplus\{(u$, hasVideo $(u) \cup\{v\})\}$
3. (a)

$$
\begin{aligned}
& \text { Return } \\
& \Delta \text { Library } \\
& r ?: \text { READER } \\
& c ?: C O P Y \\
& \text { issued }(c ?)=r ? \\
& \text { issued }^{\prime}=\text { issued } \backslash\{(c ?, r ?)\} \\
& \text { readers }{ }^{\prime}=\text { readers } \\
& \text { collection }^{\prime}=\text { collection }
\end{aligned}
$$

(b)
_ Titles

$$
\Xi \text { Library }
$$

$$
t t!: \mathbb{P} \text { TITLE }
$$

$$
t t!=\{t: T I T L E \mid \exists c: \text { collection } \bullet \text { title }(c)=t\}
$$

4. (a) $\forall i, j: 1 . . \# s \bullet i<j \Rightarrow s(i)<s(j)$
(b) $\exists i, j: 1 . . \# s \bullet i \neq j \wedge s(i)=s(j)=0$
(c) $\operatorname{ran} s=\operatorname{ran} t$
5. (a)

$$
[\text { CUSTOMER, CHECKOUT] }
$$

$\left.\begin{array}{l}\text { Supermarket } \\ \text { checkouts }: \mathbb{P} \text { CHECKOUT } \\ \text { queue }: \text { CHECKOUT } \rightarrow \text { iseq } C U S T O M E R \\ \text { dom queue }=\text { checkouts } \\ \forall o, o^{\prime}: \text { checkouts } \bullet \\ \quad o^{\prime} \neq o \Rightarrow \operatorname{ran} q u e u e ~ \\ \end{array} o^{\prime}\right) \cap \operatorname{ran}$ queue $(o)=\varnothing$.

So there is a queue (possibly empty) for each checkout.
(b)

Enter
$\Delta$ Supermarket
$c$ ? : CUSTOMER
o? : CHECKOUT
$o ? \in$ checkouts
$\forall o:$ checkouts $\bullet c ? \notin \operatorname{ran} q u e u e(o)$
queue ${ }^{\prime}=$ queue $\left.\oplus\left\{(o ?, \text { queue (o? })^{\wedge}\langle c ?\rangle\right)\right\}$
checkouts ${ }^{\prime}=$ checkouts
(c)

> Close
> $\Delta$ Supermarket
> $o ?, o^{\prime} ?:$ CHECKOUT
> $o ?, o^{\prime} ? \in$ checkouts
> queue $e^{\prime}=$ queue $\oplus\left\{\left(o^{\prime} ?\right.\right.$, queue $\left(o^{\prime} ?\right)-$ queue $\left.\left.(o ?)\right),(o ?,\langle \rangle)\right\}$
> checkouts ${ }^{\prime}=$ checkouts
6.

$$
\begin{aligned}
& \text { sum }: \operatorname{seq} \mathbb{Z} \longrightarrow \mathbb{Z} \\
& \operatorname{sum}\rangle=0 \\
& \text { sum }\langle x\rangle=x \\
& \text { sum } s \frown t=\operatorname{sum} s+\operatorname{sum} t
\end{aligned}
$$

