FMSE Exercise Course 3: Solutions

1.

SandT

$$
\frac{a, b: \mathbb{N}}{a \leq b \wedge a \geq b}
$$

The invariant can be simplified to $a=b$
\qquad

$$
a, b: \mathbb{N}
$$

$$
a \leq b \vee a \geq b
$$

The invariant is trivial since it always holds for all a and b, so it can be removed.

$$
\begin{aligned}
& -\begin{array}{l}
\text { SandU } \\
a, b: \mathbb{N} \\
c: \mathbb{P N}
\end{array} \\
& a \leq b \wedge a \in c
\end{aligned}
$$

2. Since in HasColor we have Ξ InHand, this implies hand ${ }^{\prime}=$ hand. However, in PlaysColor we have hand ${ }^{\prime} \neq$ hand.
3. (a)

$$
\left.\begin{array}{l}
{[P E R S O N, L O C K E R]} \\
\text { MESSAGE }::=\text { ok } \mid \text { ko } \mid \text { wait_list } \mid \text { returned } \mid \text { to_first } \\
\text { Syst } \\
{\left[\begin{array}{l}
\text { lockers }: \mathbb{P} \text { LOCKER } \\
\text { hire }: L O C K E R ~
\end{array}\right. \text { PERSON }} \\
\text { wait }: \text { iseq PERSON } \\
\hline \text { dom hire } \subseteq \text { lockers } \\
\text { ran hire } \cap \text { ran wait }=\varnothing \\
\forall k 1, k 2 \in \operatorname{dom} \text { hire } \bullet k 1 \neq k 2 \Rightarrow \text { hire }(k 1) \neq \text { hire }(k 2) \\
\text { dom hire } \neq \text { lockers } \Rightarrow \text { wait }=\varnothing
\end{array}\right] \begin{aligned}
& \text { Init } \longrightarrow \begin{array}{l}
\text { Syst } \\
\hline \begin{array}{l}
\text { lockers }=\varnothing \\
\text { wait }=\varnothing
\end{array} \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

(b)

```
HireAv
\DeltaSyst
    p?: PERSON
    l! : LOCKER
    m! : MESSAGE
    p? & ran hire
    dom hire }=\mathrm{ lockers
    l!\inlockers \(dom hire)
    hire' = hire }\oplus{(l!,p?)
    lockers' = lockers
    wait' = wait
    m! =ok
```

Precondition:
$p ? \notin$ ran hire \wedge dom hire \neq lockers
HireNotAv \qquad
SSyst
p? : PERSON
$m!: M E S S A G E$
$p ? \notin(\operatorname{ran}$ hire $) \cup(\operatorname{ran}$ wait $)$
dom hire $=$ lockers
w^{\prime} ait $^{\prime}=$ wait $^{-}\langle p ?\rangle$
lockers ${ }^{\prime}=$ lockers
hire ${ }^{\prime}=$ hire
$m!=$ wait_list

Precondition:
$p ? \notin(\operatorname{ran}$ hire $) \cup(\operatorname{ran}$ wait $) \wedge$ dom hire $=$ lockers

$$
\begin{aligned}
& \text { HireKO } \\
& \Xi \text { Syst } \\
& p ?: \text { PERSON } \\
& m!: M E S S A G E \\
& \hline p ? \in(\operatorname{ran} \text { hire }) \cup(\operatorname{ran} \text { wait }) \\
& m!=k o
\end{aligned}
$$

Precondition:
$p ? \in(\operatorname{ran}$ hire $) \cup(\operatorname{ran}$ wait $)$

$$
\text { Hire } \widehat{=} \text { HireA } v \vee \text { HireNotA } v \vee \text { HireKO }
$$

(c)

$$
\begin{aligned}
& \text { ReturnWait } \\
& \Delta S y s t \\
& p ?: P E R S O N \\
& l ?: \text { LOCKER } \\
& m!: M E S S A G E \\
& (l ?, p ?) \in \text { hire } \\
& \text { wait } \neq \varnothing \\
& \text { wait }=\text { tail wait } \\
& \text { hire } \left.^{\prime}=\text { hire } \oplus\{(l ?, \text { head wait })\}\right) \\
& \text { lockers }=\text { lockers } \\
& m!=\text { to_first }^{\prime}
\end{aligned}
$$

\qquad
ReturnNoWait
\qquad
Δ Syst
p? : PERSON
l? : LOCKER
m !MESSAGE
$(l ?, p ?) \in$ hire
wait $=\varnothing$
wait ${ }^{\prime}=$ wait
hire $^{\prime}=$ hire $\left.\backslash\{(l ?, p ?)\}\right)$
lockers' $=$ lockers
$m!=$ returned

$$
\text { Return } \widehat{=} \text { ReturnWait } \vee \text { ReturnNoWait }
$$

Note that Return is not robust (this was not explicitly asked in the exercise); ofcourse it is easy to make it robust by adding a schema for the case ($l ?, p ?$) \notin hire
(d)

> Remove
Δ Syst
$l l ?: \mathbb{P}$ LOCKER
$p p!: \mathbb{P}$ PERSON

$$
\begin{aligned}
& \text { lockers }^{\prime}=\text { lockers } \backslash l l ? \\
& \text { pp }!=\{p: \text { PERSON } \mid \exists l: \operatorname{LOCKER} \bullet \\
& \quad l \in l l ? \wedge \text { hire }(l)=p\} \\
& \text { hire }^{\prime}=\text { hire } \backslash\{l: L O C K E R, p: P E R S O N \mid l \in l l ?\} \\
& \text { wait }^{\prime}=\text { wait }
\end{aligned}
$$

