
Exercises werkcollege 6 
 

Exercise 1 
Consider the following FSP definitions: 
 
BUFFER  = (in -> out -> BUFFER). 
 
||SYNC_IN = (a:BUFFER || b:BUFFER)/{in/{a.in,b.in}}. 
||SYNC_OUT= (c:BUFFER || d:BUFFER)/{out/{c.out,d.out}}. 
 
||SYSTEM  = ( SYNC_IN/{sync.ac/a.out,sync.bd/b.out} 
    ||SYNC_OUT/{sync.ac/c.in,sync.bd/d.in}) 
    @{in,out}. 
 

a) Give a structured graph of the labelled transition system of SYSTEM. Label the 
states with tuples (i,j,k,l), where i,j,k,l are the respective local states of the 
processes a:BUFFER , b:BUFFER, c:BUFFER and d:BUFFER, who 
collectively determine the global state of SYSTEM (so you can’t just copy the the 
LTSA output). 

 
 
 
 
 
 
 
 
 
 

b) Give a minimal automaton that is observation equivalent to SYSTEM. Give a 
sequential FSP process (i.e. without parallel composition or hiding) that is 
observation equivalent to SYSTEM. 

 
DBUFFER = LEEG, 
LEEG = (in -> HALFVOL), 
HALFVOL = (in -> VOL | uit -> LEEG), 
VOL = (uit -> HALFVOL). 
 

Exercise 2 
Complete the MAZE example given in lecture 6 (slide 13). A path out of the maze is 
called balanced if and only if the number of north/south steps equals the number of 
east/west actions in the path. Modify your model  such that for each initial square a 
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shortest balanced path out of the maze, if it exists, is produced as a deadlock trace of the 
model. Determine the squares for which a balanced exit path exists. 
 

MAZE(Start=8) = P[Start], 
P[0] = (north->STOP|east->P[1]), 
P[1] = (east ->P[2]|south->P[4]|west->P[0]), 
P[2] = (south->P[5]|west ->P[1]), 
P[3] = (east ->P[4]|south->P[6]), 
P[4] = (north->P[1]|west ->P[3]), 
P[5] = (north->P[2]|south->P[8]), 
P[6] = (north->P[3]), 
P[7] = (east ->P[8]), 
P[8] = (north->P[5]|west->P[7]). 
 
BALANCE = B[0], 
B[i:-100..100] = ({east,west}->B[i+1] 
                 |{north,south}->B[i-1] 
                 |when (i!=0) loop -> B[i]). 
 
||SOLUTION = (MAZE || BALANCE). 
 

This solution will also generate safety errors because the index variable can be out of 
range, which will be visible as an ERROR state. By choosing the bound sufficiently great 
(e.g. 100) we can be sure that the shortest counter-examples will lead to the desired 
deadlock states.  

Exercise 3 
One solution to the dining philosophers problem permits only 4 philosophers to sit down 
at the table at the same time. Specify a BUTLER process that, when composed with the 
model presented in lecture 6 (slide 9), permits a maximum of 4 philosophers to be seated 
concurrently at the table. Show that this system is deadlock-free.  
 
const N=5 
 
PHIL = (sitdown->right.get->left.get 
          ->eat->left.put->right.put 
          ->arise->PHIL). 
 
FORK = (get -> put -> FORK). 
 
||DINERS =  
   forall [i:0..N-1]  
   (phil[i]:PHIL  
   ||{phil[i].left,phil[((i-1)+N)%N].right}::FORK). 
 
BUTLER = B[0],    
B[i:0..4] = (when (i>0) arise -> B[i-1] 



    |when (i<4) sitdown -> B[i+1]). 
 
\\ Note that the index of BUTLER counts the number of 
\\ philosophers that is seated. 
 
||WAITEDPHILS = (DINERS || phil[0..N-1]::BUTLER). 

Exercise 4 
What action trace violates the following safety property? 
 
 property PS = (a->(b->PS|a->PS)|b->a->PS). 
 
The traces of even length ending in b->b. 
 

Exercise 5 
A lift has a maximum capacity of ten people. In the model of the lift control system, 
passengers entering a lift are signalled by an enter action and passengers leaving the 
lift are signalled by and exit action. Specify a safety property in FSP that when 
composed with the lift will check that the system never allows the lift to have more than 
10 occupants. 
 
property CONTROL = C[0], 
C[i:0..10] = (when (i>0) exit -> C[i-1] 
    |when (i<10) enter -> C[i+1]). 
 
 


