Exercises werkcollege 6

Exercise 1

Consider the following FSP definitions:

```
BUFFER = (in -> out -> BUFFER).
| | SYNC_IN = (a:BUFFER || b:BUFFER)/{in/{a.in,b.in}}.
||SYSTEM = ( SYNC_IN/{sync.ac/a.out,sync.bd/b.out}
    @ {in,out }.
```

a) Give a structured graph of the labelled transition system of SYSTEM. Label the states with tuples (i, j, k, l), where i, j, k, l are the respective local states of the processes $a: B U F F E R, b: B U F F E R, c: B U F F E R$ and $d: B U F F E R$, who collectively determine the global state of SYSTEM (so you can't just copy the the

b) Give a minimal automaton that is observation equivalent to SYSTEM. Give a sequential FSP process (i.e. without parallel composition or hiding) that is observation equivalent to SYSTEM.

```
DBUFFER = LEEG,
LEEG = (in -> HALFVOL),
HALFVOL = (in -> VOL | uit -> LEEG),
VOL = (uit -> HALFVOL).
```


Exercise 2

Complete the MAZE example given in lecture 6 (slide 13). A path out of the maze is called balanced if and only if the number of north/south steps equals the number of east/west actions in the path. Modify your model such that for each initial square a
shortest balanced path out of the maze, if it exists, is produced as a deadlock trace of the model. Determine the squares for which a balanced exit path exists.

```
MAZE (Start=8) = P[Start],
P[0] = (north->STOP|east->P[1]),
P[1] = (east ->P[2] south->P[4]|west->P[0]),
P[2] = (south->P[5]|west ->P[1]),
P[3] = (east ->P[4] south->P[6]),
P[4] = (north->P[1] west ->P[3]),
P[5] = (north->P[2]| south->P[8]),
P[6] = (north->P[3]),
P[7] = (east ->P[8]),
P[8] = (north->P[5]|west->P[7]).
BALANCE = B[0],
B[i:-100..100] = ({east,west}->B[i+1]
                        |{north, south} ->B[i-1]
| SOLUTION = (MAZE | | BALANCE).
```

This solution will also generate safety errors because the index variable can be out of range, which will be visible as an ERROR state. By choosing the bound sufficiently great (e.g. 100) we can be sure that the shortest counter-examples will lead to the desired deadlock states.

Exercise 3

One solution to the dining philosophers problem permits only 4 philosophers to sit down at the table at the same time. Specify a BUTLER process that, when composed with the model presented in lecture 6 (slide 9), permits a maximum of 4 philosophers to be seated concurrently at the table. Show that this system is deadlock-free.

```
const N=5
PHIL = (sitdown->right.get->left.get
    ->eat->left.put->right.put
    ->arise->PHIL).
FORK = (get -> put -> FORK).
||DINERS =
    forall [i:0..N-1]
    (phil[i]:PHIL
    ||{phil[i].left,phil[((i-1)+N)%N].right}::FORK).
BUTLER = B[0],
B[i:0..4] = (when (i>0) arise -> B[i-1]
```

```
|when (i<4) sitdown -> B[i+1]).
```

\backslash Note that the index of BUTLER counts the number of

 philosophers that is seated.
||WAITEDPHILS $=($ DINERS || phil[0..N-1]::BUTLER).

Exercise 4

What action trace violates the following safety property?

$$
\text { property } P S=(a->(b->P S \mid a->P S) \mid b->a->P S)
$$

The traces of even length ending in $\mathrm{b}->\mathrm{b}$.

Exercise 5

A lift has a maximum capacity of ten people. In the model of the lift control system, passengers entering a lift are signalled by an enter action and passengers leaving the lift are signalled by and exit action. Specify a safety property in FSP that when composed with the lift will check that the system never allows the lift to have more than 10 occupants.

```
property CONTROL = C[0],
C[i:0..10] = (when (i>0) exit -> C[i-1]
    |when (i<10) enter -> C[i+1]).
```

