FMSE, Lecture 8:

Stochastic Process Algebra

Rom Langerak

- Markov processes
- Interactive Markov Processes (IMC)
- weak and strong bisimulation laws

Random variables, distributions

Continuous random variable D :

- may assume all values in some real interval. We assume a time interval $[0, \infty)$.
- has a probability density function f.

Examples: arrival time, departure time, service time, time before breakdown, ...

Interpretation: for a small time interval Δ,

$$
P(t \leq D \leq t+\Delta)=\Delta \cdot f(t)
$$

so the cumulative distribution:

$$
F(a)=P(D \leq a)=\int_{0}^{a} f(t) d t
$$

Many different distribution functions exist in the stochastic literature.

Exponential distribution

A stochastical variable D has exponential distribution if the density function is

$$
f(t)=\lambda e^{-\lambda t}
$$

Cumulative distribution:

$$
F(a)=\int_{0}^{a} \lambda e^{-\lambda t}=-\left.e^{-\lambda t}\right|_{0} ^{a}=1-e^{-\lambda a}
$$

Note that $P(D>a)=1-F(a)=e^{-\lambda a}$

Memoryless property

Expected time:

$$
\int_{0}^{\infty} t \cdot f(t) d t=\int_{0}^{\infty} t \lambda e^{-\lambda t}=1 / \lambda
$$

so $1 / \lambda$ is the mean time per event, so the rate $=$ number of events per time unit $=\lambda$

The exponential distribution is the only memoryless distribution, i.e. the probability to wait a certain amount of time is independent of how long has been waited already:

$$
P(D>t+d \mid D>t)=P(D>d)
$$

Examples: random autobus service, waiting for someone in a phone booth.

Exponential distribution often assumed because of its nice mathematical properties.

Markov chains

Continuous Time Markov Chain (CTMC):

- states
- transitions, each labelled with a rate

Each rate λ characterizes an exponential distribution, i.e. $P(D>t)=e^{-\lambda t}$ where D is the time at which the transition is taken.

Example: a shop

- on average 1 customer per 5 minutes (so arrival rate $\lambda=1 / 5$)
- average service time 3 minutes (so service rate $\mu=1 / 3$)
- maximum number of 5 customers in the shop

Race conditions

Two outgoing transitions with rate $\lambda 1$ and $\lambda 2$:

Chance that a transition is taken after time t : $P(D 1>t \wedge D 2>t)=e^{-\lambda 1 t} e^{-\lambda 2 t}=e^{-(\lambda 1+\lambda 2) t}$ so total outgoing rate: $\lambda 1+\lambda 2$.

Chance of taking the $\lambda 1$ transition:
$P(D 1<D 2)=\lambda 1 /(\lambda 1+\lambda 2)$, and similarly
$P(D 2<D 1)=\lambda 2 /(\lambda 1+\lambda 2)$
So in this way a probabilistic choice can be modelled:

with $p=\lambda 1 /(\lambda 1+\lambda 2)$

Bisimulation for CTMC's

A bisimulation relation can be defined for CTMC's:
similar to transition systems BUT: in addition, the cumulative rate from a state to a set of states has to be taken into account.

Example:

bisimilar to

$$
\left.0_{0}^{0.4}\right)^{2}-\cdots{ }^{0.8} \longrightarrow 0
$$

In the stochastic literature this is covered by the concept of lumpability.

Performance modelling

- CTMC well investigated model for performance analysis
- widely used in practice
- efficient numerical algorithms

But:

- performance modelling an art, depending on experience
- very complex if there are many components
- problem: compatibility of functional and performance model

Therefore:
find a compositional language (process
algebra!) that combines functional specification with performance information.

Interactive Markov Chains

Basic operators of IMC:
inaction
action prefix $\quad a . E$ delay prefix $\quad(\lambda) . E$ choice $\quad E+F$
process instantiation X
process definition $\quad[X:=E]$
Example of an IMC expression:

$$
a \cdot(\lambda) \cdot(\mu) \cdot a \cdot(\mu) \cdot 0
$$

The nature of choice

What does

$$
a \cdot P+(\lambda) \cdot Q
$$

mean?
Maximal Progress assumption:
an action happens as soon as it is enabled - but here we do not know if a is enabled (may depend on environment)

But:
τ is always enabled, so we have the axiom:

$$
(\lambda) . E+\tau \cdot F=\tau . F
$$

(so the τ always happens, while the delay is discarded)

Strong bisimulation laws

For process algebra:

$$
\begin{gathered}
E+F=F+E \\
(E+F)+G=E+(F+G) \\
E+E=E \\
E+0=E
\end{gathered}
$$

For IMC:

$$
\begin{gathered}
E+F=F+E \\
(E+F)+G=E+(F+G) \\
E+0=E \\
a \cdot E+a \cdot E=a \cdot E \\
(\lambda) \cdot E+(\mu) \cdot E=(\lambda+\mu) \cdot E \\
(\lambda) \cdot E+\tau \cdot F=\tau \cdot F
\end{gathered}
$$

recognize the race condition, and the maximal progress assumption

Operational semantics

Two types of transitions:

- action transitions: \xrightarrow{a}
- delay transitions: $\stackrel{\lambda}{\rightarrow}$

Axiom:

$$
a . E \xrightarrow{a} E
$$

Rules:

$$
\begin{gathered}
E \xrightarrow{a} E^{\prime} \\
E+F \xrightarrow{a} E^{\prime} \\
F \xrightarrow{a} F^{\prime} \\
E+F \xrightarrow{a} F^{\prime}
\end{gathered}
$$

Operational semantics (2)

Axiom:

$$
(\lambda) \cdot E \stackrel{\lambda}{\rightarrow} E
$$

Rules:

$$
\begin{gathered}
\frac{E \stackrel{\lambda}{\rightarrow} E^{\prime}, F \stackrel{\tau}{\not}}{E+F \stackrel{\lambda}{\rightarrow} E^{\prime}} \\
\frac{F \stackrel{\lambda}{\rightarrow} F^{\prime}, E \stackrel{f^{\top}}{\longrightarrow}}{E+F \stackrel{\lambda}{\rightarrow} F^{\prime}}
\end{gathered}
$$

 necessary because of the maximal progress assumption.

Operational semantics (3)

Process definition and instantiation:
Rules:

$$
\begin{gathered}
\frac{E\{[X:=E] / X\} \stackrel{a}{\longrightarrow} E^{\prime}}{[X:=E] \xrightarrow{a} E^{\prime}} \\
\frac{E\{[X:=E] / X\} \stackrel{\lambda}{\rightarrow} E^{\prime}}{[X:=E] \xrightarrow{\lambda} E^{\prime}}
\end{gathered}
$$

Example derivation:

$$
\text { (}) \cdot[X:=a \cdot X] \stackrel{\lambda}{\rightarrow}[X:=a \cdot X]
$$

Now

$$
a \cdot X\{[X:=a \cdot X] / X\}=a \cdot[X:=a \cdot X]
$$

SO

$$
\begin{gathered}
a \cdot[X:=a \cdot X] \xrightarrow{a}[X:=a . X] \\
{[X:=a \cdot X] \xrightarrow{a}[X:=a \cdot X]}
\end{gathered}
$$

$$
\text { so }(\lambda) .[X:=a \cdot X] \xrightarrow{\lambda} \xrightarrow{a} \xrightarrow{a} \xrightarrow{a} \ldots
$$

Weak bisimulation laws

Process algebra: laws for strong bisimulation, plus:

$$
\begin{gathered}
a \cdot \tau \cdot E=a . E \\
E+\tau \cdot E=\tau . E \\
a .(E+\tau . F)+a . F=a \cdot(E+\tau . F)
\end{gathered}
$$

IMC: IMC laws for strong bisimulation, plus:

$$
\begin{gathered}
a \cdot \tau \cdot E=a \cdot E \\
(\lambda) \cdot \tau \cdot E=(\lambda) \cdot E \\
E+\tau \cdot E=\tau \cdot E \\
a \cdot(E+\tau \cdot F)+a \cdot F=a \cdot(E+\tau \cdot F)
\end{gathered}
$$

Weak bisimulation (2)

- note that $E+\tau . E=\tau$. E needs no special cases for delays and actions
- note that
$(\lambda) \cdot(E+\tau \cdot F)+(\lambda) \cdot F \neq(\lambda) \cdot(E+\tau \cdot F)$ as lefthand side has outgoing rate 2λ, whereas righthand side has rate λ

Strong and weak bisimulation can defined in a similar way as for process algebra
(but like bisimulation for CTMC's, cumulative outgoing rates have to be taken into consideration, see paper)

Parallel composition

$P\left\|a_{1} \ldots a_{n}\right\| Q$ (similar to LOTOS).
Rules:

$$
\begin{aligned}
& P \xrightarrow{a} P^{\prime} \quad a \notin\left\{a_{1} \ldots a_{n}\right\} \\
& P\left\|a_{1} \ldots a_{n}\right\| Q \xrightarrow{a} P^{\prime}\left\|a_{1} \ldots a_{n}\right\| Q \\
& Q \xrightarrow{a} Q^{\prime} \quad a \notin\left\{a_{1} \ldots a_{n}\right\} \\
& P\left\|a_{1} \ldots a_{n}\right\| Q \xrightarrow{a} P\left\|a_{1} \ldots a_{n}\right\| Q^{\prime} \\
& \xrightarrow[{P\left\|a_{1} \ldots a_{n}\right\| Q \xrightarrow{a} P^{\prime}\left\|a_{1} \ldots a_{n}\right\| Q^{\prime}}]{P} \\
& P \xrightarrow{\lambda} P^{\prime} Q \stackrel{\tau}{\longrightarrow} \\
& P\left\|a_{1} \ldots a_{n}\right\| Q \stackrel{\lambda}{\rightarrow} P^{\prime}\left\|a_{1} \ldots a_{n}\right\| Q \\
& Q \xrightarrow{\lambda} Q^{\prime} P \xrightarrow{\tau} \\
& P\left\|a_{1} \ldots a_{n}\right\| Q \xrightarrow{\lambda} P\left\|a_{1} \ldots a_{n}\right\| Q^{\prime}
\end{aligned}
$$

(negative conditions: maximal progress)

Interleaving of delay actions

\bigcirc

results in

This is correct, because

- first the earliest transition happens
- then the second transition happens, but because of the memoryless property, its delay starts after the first transition

Abstraction

hide $a_{1} \ldots a_{n}$ in P
(called hiding in LOTOS)
Rules:

$$
P \xrightarrow{a} P^{\prime} \quad a \notin\left\{a_{1} \ldots a_{n}\right\}
$$

hide $a_{1} \ldots a_{n}$ in $P \xrightarrow{a}$ hide $a_{1} \ldots a_{n}$ in P^{\prime}

$$
P \xrightarrow{a} P^{\prime} \quad a \in\left\{a_{1} \ldots a_{n}\right\}
$$

hide $a_{1} \ldots a_{n}$ in $P \xrightarrow{\tau}$ hide $a_{1} \ldots a_{n}$ in P^{\prime}

$$
P \stackrel{\lambda}{\rightarrow} P^{\prime} \quad \text { hide } a_{1} \ldots a_{n} \text { in } P \xrightarrow{\tau}
$$

hide $a_{1} \ldots a_{n}$ in $P \xrightarrow{\boldsymbol{L}}$ hide $a_{1} \ldots a_{n}$ in P^{\prime}
(negative condition: maximal progress)

Example: obtaining a CTMC

The following two processes are synchronized:

The result:

If a is hidden, this is weak bisimulation equivalent with

So hiding all actions and applying weak bisimulation may lead to a CTMC (possible problem: nondeterminism)

Example: shop

We specify the shop in IMC (using some obvious syntactic extensions):
hide enter, serve in
Customer \|enter\| (Shop(0) \|serve\| Clerk)
Customer $:=(\lambda)$. enter.Customer
Shop $(i):=[i<5]->$ enter.Shop $(i+1)$ $[i>0]->\operatorname{serve} . S h o p(i-1)$

Clerk := serve.(μ).Clerk
This specification is weak bisimulation equivalent to the shop on slide 5 .

Conclusions

- Compositional process algebraic framework for Interactive Markov Chains
- integration of functional specification and performance analysis
- resolving nondeterminism, hiding all actions and performing weak bisimulation leads to a CTMC that can be analysed in the usual way
- weak bisimulation may lead to an enormous decrease of the size of a CTMC
- other approaches: PEPA, TIPP, EMPA. Combine delays with actions; problem: what is the delay of a synchronised action?

