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FMSE, Lecture 8:

Stochastic Process Algebra

Rom Langerak

• Markov processes

• Interactive Markov Processes (IMC)

• weak and strong bisimulation laws
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Random variables, distributions

Continuous random variable D:

• may assume all values in some real interval.

We assume a time interval [0,∞).

• has a probability density function f .

Examples: arrival time, departure time, service

time, time before breakdown, . . .

Interpretation: for a small time interval ∆,

P (t ≤ D ≤ t + ∆) = ∆ · f(t)

so the cumulative distribution:

F (a) = P (D ≤ a) =

∫ a

0

f(t)dt

Many different distribution functions exist in

the stochastic literature.
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Exponential distribution

A stochastical variable D has exponential

distribution if the density function is

f(t) = λe−λt

λ

λ e
−λ t

Cumulative distribution:

F (a) =

∫ a

0

λe−λt = −e−λt|a0 = 1 − e−λa

e
−λ t

1−

1

Note that P (D > a) = 1 − F (a) = e−λa
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Memoryless property

Expected time:
∫

∞

0

t · f(t)dt =

∫
∞

0

tλe−λt = 1/λ

so 1/λ is the mean time per event, so the rate

= number of events per time unit = λ

The exponential distribution is the only

memoryless distribution, i.e. the probability to

wait a certain amount of time is independent of

how long has been waited already:

P (D > t + d |D > t) = P (D > d)

Examples: random autobus service, waiting for

someone in a phone booth.

Exponential distribution often assumed

because of its nice mathematical properties.
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Markov chains

Continuous Time Markov Chain (CTMC):

• states

• transitions, each labelled with a rate

Each rate λ characterizes an exponential

distribution, i.e. P (D > t) = e−λt where D is

the time at which the transition is taken.

Example: a shop

• on average 1 customer per 5 minutes (so

arrival rate λ = 1/5)

• average service time 3 minutes (so service

rate µ = 1/3)

• maximum number of 5 customers in the

shop

shop
µµ µ µ µ

λλλλλ
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Race conditions

Two outgoing transitions with rate λ1 and λ2:

λ2

λ1

Chance that a transition is taken after time t:

P (D1 > t ∧ D2 > t) = e−λ1te−λ2t = e−(λ1+λ2)t

so total outgoing rate: λ1 + λ2.

Chance of taking the λ1 transition:

P (D1 < D2) = λ1/(λ1 + λ2), and similarly

P (D2 < D1) = λ2/(λ1 + λ2)

So in this way a probabilistic choice can be

modelled:

1−p

p

with p = λ1/(λ1 + λ2)
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Bisimulation for CTMC’s

A bisimulation relation can be defined for

CTMC’s:

similar to transition systems BUT: in addition,

the cumulative rate from a state to a set of

states has to be taken into account.

Example:

0.8

2

20.2

0.2

bisimilar to
0.4 2 0.8

In the stochastic literature this is covered by

the concept of lumpability.
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Performance modelling

• CTMC well investigated model for

performance analysis

• widely used in practice

• efficient numerical algorithms

But:

• performance modelling an art, depending

on experience

• very complex if there are many components

• problem: compatibility of functional and

performance model

Therefore:

find a compositional language (process

algebra!) that combines functional specification

with performance information.
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Interactive Markov Chains

Basic operators of IMC:

inaction 0

action prefix a.E

delay prefix (λ).E

choice E + F

process instantiation X

process definition [X := E]

Example of an IMC expression:

a.(λ).(µ).a.(µ).0
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The nature of choice

What does

a.P + (λ).Q

mean?

Maximal Progress assumption:

an action happens as soon as it is enabled - but

here we do not know if a is enabled (may

depend on environment)

But:

τ is always enabled, so we have the axiom:

(λ).E + τ.F = τ.F

(so the τ always happens, while the delay is

discarded)
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Strong bisimulation laws

For process algebra:

E + F = F + E

(E + F ) + G = E + (F + G)

E + E = E

E + 0 = E

For IMC:

E + F = F + E

(E + F ) + G = E + (F + G)

E + 0 = E

a.E + a.E = a.E

(λ).E + (µ).E = (λ + µ).E

(λ).E + τ.F = τ.F

recognize the race condition, and the maximal

progress assumption
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Operational semantics

Two types of transitions:

• action transitions:
a

−→

• delay transitions:
λ

−→

Axiom:

a.E
a

−→ E

Rules:

E
a

−→ E′

E + F
a

−→ E′

F
a

−→ F ′

E + F
a

−→ F ′
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Operational semantics (2)

Axiom:

(λ).E
λ

−→ E

Rules:

E
λ

−→ E′, F 6
τ

−→

E + F
λ

−→ E′

F
λ

−→ F ′, E 6
τ

−→

E + F
λ

−→ F ′

The conditions F 6
τ

−→ resp. E 6
τ

−→ are

necessary because of the maximal progress

assumption.
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Operational semantics (3)

Process definition and instantiation:

Rules:

E{[X := E]/X}
a

−→ E′

[X := E]
a

−→ E′

E{[X := E]/X}
λ

−→ E′

[X := E]
λ

−→ E′

Example derivation:

(λ).[X := a.X]
λ

−→ [X := a.X]

Now

a.X{[X := a.X]/X} = a.[X := a.X]

so

a.[X := a.X]
a

−→ [X := a.X]

[X := a.X]
a

−→ [X := a.X]

so (λ).[X := a.X]
λ

−→
a

−→
a

−→
a

−→ . . .
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Weak bisimulation laws

Process algebra: laws for strong bisimulation,

plus:

a.τ.E = a.E

E + τ.E = τ.E

a.(E + τ.F ) + a.F = a.(E + τ.F )

IMC: IMC laws for strong bisimulation, plus:

a.τ.E = a.E

(λ).τ.E = (λ).E

E + τ.E = τ.E

a.(E + τ.F ) + a.F = a.(E + τ.F )
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Weak bisimulation (2)

• note that E + τ.E = τ.E needs no special

cases for delays and actions

• note that

(λ).(E + τ.F ) + (λ).F 6= (λ).(E + τ.F ) as

lefthand side has outgoing rate 2λ, whereas

righthand side has rate λ

Strong and weak bisimulation can defined in a

similar way as for process algebra

(but like bisimulation for CTMC’s, cumulative

outgoing rates have to be taken into

consideration, see paper)
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Parallel composition

P ||a1 . . . an||Q (similar to LOTOS).

Rules:

P
a

−→ P ′ a 6∈ {a1 . . . an}

P ||a1 . . . an||Q
a

−→ P ′||a1 . . . an||Q

Q
a

−→ Q′ a 6∈ {a1 . . . an}

P ||a1 . . . an||Q
a

−→ P ||a1 . . . an||Q
′

P
a

−→ P ′ Q
a

−→ Q′ a ∈ {a1 . . . an}

P ||a1 . . . an||Q
a

−→ P ′||a1 . . . an||Q
′

P
λ

−→ P ′ Q 6
τ

−→

P ||a1 . . . an||Q
λ

−→ P ′||a1 . . . an||Q

Q
λ

−→ Q′ P 6
τ

−→

P ||a1 . . . an||Q
λ

−→ P ||a1 . . . an||Q
′

(negative conditions: maximal progress)
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Interleaving of delay actions

a

µλ

a

||a||

results in

µ

µ

a

λ

λ

This is correct, because

• first the earliest transition happens

• then the second transition happens, but

because of the memoryless property, its

delay starts after the first transition
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Abstraction

hide a1 . . . an in P

(called hiding in LOTOS)

Rules:

P
a

−→ P ′ a 6∈ {a1 . . . an}

hide a1 . . . an in P
a

−→ hide a1 . . . an in P ′

P
a

−→ P ′ a ∈ {a1 . . . an}

hide a1 . . . an in P
τ

−→ hide a1 . . . an in P ′

P
λ

−→ P ′
hide a1 . . . an in P 6

τ
−→

hide a1 . . . an in P
λ

−→ hide a1 . . . an in P ′

(negative condition: maximal progress)
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Example: obtaining a CTMC

The following two processes are synchronized:

F

ντ a

λ

E

λ

a

The result:
E ||a|| F

ν

ν λ

λ

λλλ

τ

a

If a is hidden, this is weak bisimulation

equivalent with

2λ

G

λ

ν

ν
λ

So hiding all actions and applying weak

bisimulation may lead to a CTMC (possible

problem: nondeterminism)
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Example: shop

We specify the shop in IMC (using some

obvious syntactic extensions):

hide enter, serve in

Customer ||enter|| (Shop(0) ||serve|| Clerk)

Customer := (λ).enter.Customer

Shop(i) := [i < 5]− > enter.Shop(i + 1)

[i > 0]− > serve.Shop(i − 1)

Clerk := serve.(µ).Clerk

This specification is weak bisimulation

equivalent to the shop on slide 5.
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Conclusions

• Compositional process algebraic framework

for Interactive Markov Chains

• integration of functional specification and

performance analysis

• resolving nondeterminism, hiding all

actions and performing weak bisimulation

leads to a CTMC that can be analysed in

the usual way

• weak bisimulation may lead to an

enormous decrease of the size of a CTMC

• other approaches: PEPA, TIPP, EMPA.

Combine delays with actions; problem:

what is the delay of a synchronised action?


