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FMSE, Lecture 8:'
Stochastic Process Algebra'

Rom Langerak

e Markov processes
e Interactive Markov Processes (IMC)

e weak and strong bisimulation laws
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Continuous random variable D:

We assume a time interval [0, 00).

e has a probability density function f.

time, time before breakdown, ...

Interpretation: for a small time interval A,
Pt<D<t+A)=A-f(t)

so the cumulative distribution:
Fla) = P(D < a) = / F(t)dt
0

Many different distribution functions exist in
the stochastic literature.
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Random variables, distributions.

e may assume all values in some real interval.

Examples: arrival time, departure time, service
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‘ Exponential distribution I

A stochastical variable D has exponential
distribution if the density function is

F(t) = Ae™

Ae

Cumulative distribution:

F(a) = / Ae M= —emME =1 g
0

Note that P(D > a) =1 — F(a) = e™
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‘ Memoryless property I

Expected time:
/ t- f(t)dt :/ the M =1/A
0 0

so 1/) is the mean time per event, so the rate

= number of events per time unit = A

The exponential distribution is the only
memoryless distribution, i.e. the probability to
wait a certain amount of time is independent of

how long has been waited already:

P(D>t+d|D>t)=P(D >d)

Examples: random autobus service, waiting for

someone in a phone booth.

Exponential distribution often assumed
because of its nice mathematical properties.
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Markov chains I

Continuous Time Markov Chain (CTMC):
e states
e transitions, each labelled with a rate

Each rate A characterizes an exponential
distribution, i.e. P(D >t) = e~ where D is
the time at which the transition is taken.

Example: a shop

e on average 1 customer per 5 minutes (so
arrival rate A = 1/5)

e average service time 3 minutes (so service
rate = 1/3)

e maximum number of 5 customers in the

shop




/ ‘ Race conditions ' \

Two outgoing transitions with rate A1 and A\2:

Al
O e

A2
O

Chance that a transition is taken after time t:
P(D1 >t AD2>t) =e Mt 22t = g~ (Al+A2)t
so total outgoing rate: A1 4+ A\2.

Chance of taking the A1 transition:
P(D1 < D2) = A\1/(A1 + A\2), and similarly
P(D2 < D1) = A\2/(A1 4+ \2)

So in this way a probabilistic choice can be

modelled:
P

O———0O

hy

O

with p = A1/(Al + \2)
- /




‘Bisimulation for CTMC’SI

A bisimulation relation can be defined for
CTMC’s:

similar to transition systems BUT: in addition,
the cumulative rate from a state to a set of
states has to be taken into account.

Example:
0.2 2
- ~ 0.8
o) &O ----- O
0.2 2

bisimilar to

In the stochastic literature this is covered by
the concept of lumpability.
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‘ Performance modelling I

e CTMC well investigated model for

performance analysis

e widely used in practice
e efficient numerical algorithms

But:

e performance modelling an art, depending

on experience
e very complex if there are many components

e problem: compatibility of functional and

performance model

Therefore:
find a compositional language (process
algebra!) that combines functional specification

with performance information.
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Basic operators of IMC:

inaction 0
action prefix a.B
delay prefix (N).E

choice E+ F
process instantiation X

process definition (X = F]

Example of an IMC expression:

a.(A).(u).a.(u).0

-

Interactive Markov Chains'
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The nature of choice'

What does

a.P+ (N).Q
mean”?
Maximal Progress assumption:

an action happens as soon as it is enabled - but
here we do not know if a is enabled (may

depend on environment)
But:

T is always enabled, so we have the axiom:

(N.E+17.F=1.F

(so the 7 always happens, while the delay is
discarded)
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/ Strong bisimulation laws'

For process algebra:
F+F=F+F

(FE+F)+G=FE+ (F+GQG)
E+FE=F
E+0=F
For IMC:
F+F=F+FE
(F+F)+G=FE+ (F+G)
E+0=F
ol +a.F=ak
(MN.E+(pn).E=MN+p).E
(N.E+17F=1F

\progress assumption

recognize the race condition, and the maximal

/
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‘ Operational semantics I

Two types of transitions:

. o e a
e action transitions: —

A
e delay transitions: ——

Axiom:
a.FE 5 FE
Rules:
J D
E+F -5 FE
F = F'
E+F -2 F




Operational semantics (2) I

Axiom:

(\.E-oE

Rules:
A
E—-——FE, 6 F /s

A
E+F ——FE'
A
F—-——F 6 E/

A
E+F —— F'

The conditions F /- resp. E /- are
necessary because of the maximal progress

assumption.
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Operational semantics (3) I

Process definition and instantiation:

Rules:

E{[X :=E]/X} -+ F
X :=EFE] -5 E'

B{(X := B|/X} 2 E’
X = FE]| - E’

Example derivation:
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‘Weak bisimulation laws'

Process algebra: laws for strong bisimulation,

plus:

a.7.F =a.F
F+7E=71F
a.(E+71.F)4+aF =a.(E+T1.F)

IMC: IMC laws for strong bisimulation, plus:

a.7.F =a.F
(N).7.E=(\).E
F+7E=71F

a.(E+717.F)+aF =a.(E+T1.F)
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Weak bisimulation (2) I

e note that £ + 7.F = 7.F needs no special

cases for delays and actions

e note that
N(E4+T17.F)+ (\N.F#\N.(FE+T1.F) as
lefthand side has outgoing rate 2\, whereas
righthand side has rate A

Strong and weak bisimulation can defined in a

similar way as for process algebra

(but like bisimulation for CTMC’s, cumulative
outgoing rates have to be taken into
consideration, see paper)
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‘ Parallel composition I

Plla; . ..a,||@ (similar to LOTOS).
Rules:

PP adiar...an}
PHal...anHQL>P’Ha1...a,n||Q
Q--Q ad{ar...an}
PHal...anHQL>P||a1...an||Q’
PP Q-5Q ac{ar...an}
PHal...anHQL>P’Ha1...an||Q’
PEop Q /s
Pllay ... an||Q 2= P'lay - .. an||Q
Q -q P/
Plla; ... an||Q 2= Pllay . .. an||Q’

(negative conditions: maximal progress)
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/ Interleaving of delay actions' \

results in

This is correct, because
e first the earliest transition happens

e then the second transition happens, but

because of the memoryless property, its

\ delay starts after the first transition
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Abstraction '

hide ay...a, In P
(called hiding in LOTOS)

Rules:
PP ad{a...a,}

[ ] [ ] al [ ] [ ]
hidea;...a,, in P — hide a;...a,, in P’

PP acia...a,}

[ ] [ ] 7- [ ] [ ]
hidea;...a,, in P — hide a;...a,, in P’

)\ T
P—— P hidea;...a, in P /—

)
hide a;...a,, in P —— hide ay...a,, in P’

(negative condition: maximal progress)
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‘Example: obtaining a CTMCI

The following two processes are synchronized:

a
O— »0 oM oo
)\\ /T :\ a
OE O =
The result:
EllallE
O—0O---~ -0 > O
i)\ A ')\

If a is hidden, this is weak bisimulation

equivalent with

So hiding all actions and applying weak
bisimulation may lead to a CTMC (possible

\problem: nondeterminism) /




‘ Example: shop I

We specify the shop in IMC (using some

obvious syntactic extensions):

hide enter, serve in
C'ustomer ||enter|| (Shop(0) ||serve|| Clerk)

Customer := (\).enter.Customer

Shop(i) == [i < 5]— > enter.Shop(i + 1)
i > 0]— > serve.Shop(i — 1)

Clerk := serve.(u).Clerk

This specification is weak bisimulation
equivalent to the shop on slide 5.
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‘ Conclusions '

Compositional process algebraic framework
for Interactive Markov Chains

integration of functional specification and

performance analysis

resolving nondeterminism, hiding all
actions and performing weak bisimulation

leads to a CTMC that can be analysed in
the usual way

weak bisimulation may lead to an
enormous decrease of the size of a CTMC

other approaches: PEPA, TIPP, EMPA.
Combine delays with actions; problem:
what is the delay of a synchronised action?
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