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1. INTRODUCTION

A fundamental idea in concurrency theory is that two processes are deemed equiv-
alent if they cannot be distinguished by external observation. Varying the power
of the external observer, different notions of behavioral equivalence arise. For pro-
cesses modeled as labeled transition systems (LTSs), this idea has been thoroughly
explored: a large number of behavioral equivalences have been characterized via
intuitive testing scenarios, also called button-pushing experiments [Milner 1980].

In a typical button-pushing experiment, we envision a machine equipped with a
display and a series of buttons. The process under observation resides within this
machine and its activities, represented by action symbols, are shown on the display.
An external observer may influence the execution of this process by pressing one
or more buttons at various times. The simplest example of such an experiment is
the trace machine, which has an action display but no buttons. It turns out to be
sufficient for characterizing the well-known trace equivalence for LTSs.

Button-pushing experiments are desirable for a number of reasons. First, they
provide a simple and intuitive way to understand behavioral equivalences that are
defined more abstractly, e.g. via process algebras or in terms of satisfaction of logical
formulas. Second, they provide a unified setting for comparing these behavioral
equivalences. We refer to Van Glabbeek [Glabbeek 2001] for an excellent overview
of results in this area of comparative concurrency semantics. Finally, in a button-
pushing experiment, interactions between a process and an observer take place
exclusively via the predefined interface, namely, display and buttons. This is in
keeping with the tradition of modular reasoning, which requires that processes
evolve independently from their environments, aside from explicit inputs.

The present paper proposes such a testing scenario for probabilistic processes.
(For our purposes, a probabilistic process may make discrete random choices as well
as nondeterministic choices.) This task calls for a nontrivial extension of existing
testing scenarios for LTSs, because one must specify a means to “observe” proba-
bility distributions. For that end, we devise a trace distribution machine and use
the theory of null hypothesis testing to provide a link between

—probability distributions derived in an abstract semantics and

—sample observations collected from the trace distribution machine.

The distinguishing feature of our trace distribution machine is a reset button,
which restarts the machine from its initial state. This allows an observer to record
traces from multiple runs of the machine. These runs are assumed to be indepen-
dent; that is, random choices in one run are not correlated with those in another
run. However, we do not assume that nondeterministic choices are resolved in ex-
actly the same way, therefore each run is governed by a possibly different probability
distribution.

The semantics of this reset button poses a challenge in designing our hypothesis
tests. Even though we can compute frequencies of traces from a sample of m

runs, it is not immediately clear what information we have obtained about the m

possibly distinct probability distributions. As it turns out, this frequency statistic
provides a very natural estimator for the average of the m distributions. Thus
we reason about these m distribution collectively: a typical null hypothesis states

Journal of the ACM, Vol. V, No. N, November 2007.



A Testing Scenario for Probabilistic Processes · 3

that a sample consisting of m runs is generated by a particular sequence of m

distributions.
Another challenging issue is infinite behaviors of the probabilistic processes.

These may include infinite branching and non-terminating runs. In contrast, exper-
iments on the trace distribution machine are of a finite character: an observer can
record only finitely many symbols from a single run and can observe only finitely
many runs. To overcome this discrepancy, we prove an Approximation Induction
Principle, stating that every infinite probabilistic behavior can be approximated by
its finite “sub-behaviors”. In addition, we introduce an extended trace distribution
machine for processes with an infinite action alphabet. This machine allows the
observer to suppress all but a finite number of actions, so that the sample space of
each experiment remains finite.

Our work is carried out in the framework of probabilistic automata (PA), which
augments the LTS model with discrete probability distributions [Segala 1995]. This
framework has seen many applications in the analysis of distributed algorithms [Ag-
garwal 1994; Lynch et al. 1994; Pogosyants et al. 2000; Stoelinga and Vaandrager
1999]. In the present paper, we prove that the observational equivalence induced
by our testing scenario coincides with the trace distribution equivalence of [Segala
1995]. Therefore, our testing scenario can be viewed as an intuitive justification of
the more abstract notion of trace distribution equivalence.

We have chosen the PA framework in part for its simplicity, so that we are free
from particular features that may hamper the portability of our results. Indeed,
we focus on semantic objects induced by PAs, as opposed to the automata them-
selves. These objects are probability distributions on computation paths (here
called probabilistic executions) and probability distributions on traces (here called
trace distributions). They can be viewed very naturally as trees with probabilistic
branching, so that our technical developments quickly migrate towards the more
fundamental settings of ordered sets and metric spaces. We believe these devel-
opments can be easily adapted to other settings, where the semantic objects of
interest are such probabilistic trees, regardless of the particular framework under
which these trees are induced.

Finally, many of our results are of independent interests, outside the context of
the current testing scenario. For instance, we define an ordering ≤[ on ω-sequences
over the unit interval and thus on the set of trace distributions. We favor ≤[

over the pointwise ordering induced by the usual ≤ relation on [0, 1], because the
resulting CPO structures are algebraic, with a very natural characterization of
compact elements. In addition, we give an explicit characterization of the set of
probabilistic executions of an arbitrary PA A, as well as a generic construction of
limits. These are in turn used to show that the set of trace distributions induced
by A is a closed set in an appropriate metric space and is closed under convex
combinations. All such results are useful tools in formal verification.

Related Work. Several testing preorders and equivalences for probabilistic pro-
cesses have been proposed in the literature [Christoff 1990; Segala 1996; Gregorio-
Rodŕıgez and Núñez 1998; Cleaveland et al. 1999; Jonsson and Yi 2002; Deng et al.
2007a; 2007b]. All these papers study testing relations in the style of De Nicola and
Hennesy [Nicola and Hennessy 1984]. That is, a test is defined as a (probabilistic)
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process that interacts with a system via shared actions and reports either success
or failure. The various testing relations are then obtained by comparing success
probabilities. Unlike our testing scenario, these papers do not describe how success
probabilities can be observed from an external point of view. Therefore, in our
opinion, these relations are not completely observational. In that sense, our work
is more closely related to the seminal paper of Larsen and Skou [Larsen and Skou
1991], where probabilistic bisimulation is characterized by a testing scenario based
on hypothesis testing. Technically, the setting in [Larsen and Skou 1991] is more
restrictive than ours because of their minimal deviation assumption, which imposes
a uniform lower bound on all transition probabilities and hence an upper bound on
the probabilistic branching degree.

Also closely related is the fast emerging field of statistical model checking [Younes
and Simmons 2002; Younes et al. 2004; Sen et al. 2004; Younes 2005]. Traditionally,
a probabilistic model checker does its job by exploring the state space and comput-
ing numerically all relevant probabilities. In statistical model checking, the idea is
instead to collect sample runs from the model. Properties of interest are formulated
as test hypotheses and, by increasing the number of sample runs, one can control
the probability of producing an erroneous answer to the model checking question.
So far, statistical model checking techniques have been developed for discrete and
continuous time Markov chains [Younes et al. 2004; Sen et al. 2004], semi-Markov
processes [Sen et al. 2004] and stochastic discrete event systems [Younes and Sim-
mons 2002; Younes 2005]. In most of these models, the notions of delay and relative
timing are treated explicitly, whereas in our approach nondeterminism is used to
model timing uncertainty. Much of our effort goes to show that standard techniques
in hypothesis testing can be used to distinguish processes even in the presence of
nondeterminism, as long as all nondeterministic choices are within a closed set.

Our development differs in another way from many other works on stochastic
systems (e.g. [Edalat 1995; Baier and Kwiatkowska 1998; Desharnais et al. 2002]),
which focus more on functional behaviors of these processes and hence probability
distributions on the state space. These distributions are conditional upon occur-
rences of events, which are often interpreted as inputs to a system. In contrast, we
focus on probability distributions on computation paths and traces, therefore we
must take into account probability distributions on events, in addition to distribu-
tions on states. In this respect, our development is closer to [Vatan 2001], which
studies properties of distribution functions (a generalized notion of language) gen-
erated by finite-state probabilistic automata. One may argue that this distinction
between state-based and action-based reasonings is inconsequential, yet our expe-
rience suggests the slight difference in interpretation can lead to divergence in the
methods of analysis and eventually in the types of application domains.

Organization. We start in Section 2 with an informal presentation of our test-
ing scenario. Section 3 provides some mathematical preliminaries, while Section 4
recalls the definitions of probabilistic automata and their behaviors. In Section 5,
we introduce in detail the design and motivation of our test scenario and, in Sec-
tion 6, we provide an explicit characterization of the set of probabilistic executions
and use that to prove convex closure properties and to construct limiting adver-
saries. Section 7 gives a formal treatment of finite approximations on three levels:
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adversaries, probabilistic executions and trace distributions. Section 8 deals with
technical results regarding metric convergence and Section 9 presents a proof of
our main theorem. Concluding remarks and discussions of future work follow in
Section 10.

2. PREVIEW: BUTTON-PUSHING EXPERIMENTS

Before presenting our results at a technical level, we give an informal overview
of the proposed testing scenario. As described in Section 1, a typical button-
pushing experiment consists of a process operating inside a black box. Given a
process S, such an experiment induces a set Obs(S) of all observations that are
possible/acceptable under S. This in turn yields an observational equivalence: two
LTSs S1 and S2 are equivalent if and only if Obs(S1) = Obs(S2).

For instance, trace semantics for image finite1 LTSs can be characterized by the
trace machine [Glabbeek 2001], depicted in Figure 1 on the left. This machine has
no buttons at all, thus the observer cannot influence its execution.

b

a a

b c

a

cb

Fig. 1. The trace machine (left), and LTSs S1 and S2.

During a single experiment, the observer records the contents of the display over
time, yielding a finite trace of the process inside the machine. Gathering all possible
observations, we obtain a testing scenario that corresponds to trace equivalence.
Indeed, the LTSs S1 and S2 in Figure 1 are trace equivalent and have the same
observations under this testing scenario: ε (the empty sequence), a, ab and ac.

To obtain a testing scenario for probabilistic processes, we add to the trace ma-
chine a reset button, which brings the machine back to its initial state. The result-
ing trace distribution machine is depicted in Figure 2.

c

reset

Fig. 2. The trace distribution machine.

An experiment on the trace distribution machine is carried out as follows.

1This means, for each state s and action a, only finitely many a-transitions are enabled in s (cf.

Section 4).
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(1) First, the observer fixes the type of the experiment: two natural numbers k

and m. The first specifies the maximum length of each run and is referred to
as the depth of the experiment. The second specifies the number of runs to be
executed and is referred to as the width.

(2) The observer then starts the machine by pushing the reset button.

(3) As the machine executes, the action symbols appearing on the display are
recorded in succession.

(4) When the display becomes empty, or when the observer has recorded k actions,
the machine is reset and recording starts in a fresh column.

(5) The experiment stops when m runs of the machine have been recorded.

Table I illustrates a sample that may be obtained in a type-〈2, 6〉 experiment
conducted on the process S1 from Figure 1. (In our setting, LTSs are degenerate
probabilistic processes.)

1 2 3 4 5 6

a a a a a a

c b c b c c

Table I. Sample obtained in type-〈2, 6〉 experiment conducted on process S1.

So far, we have described how to collect a sample from the trace distribution
machine. The next step is to use hypothesis testing to define the set of type-〈k, m〉
acceptable observations of S, denoted Obs(S, k,m), for a given process S and sample
type 〈k, m〉. Then Obs(S) is defined to be the union

⋃
k,m Obs(S, k,m). In this

way, two processes S1 and S2 are distinguished in our semantics if and only if there
exists sample type 〈k, m〉 such that Obs(S1, k,m) 6= Obs(S2, k,m).

As we mentioned in Section 1, this task is complicated by the semantics of our
reset button. Namely, nondeterministic choices may be resolved differently in the
various runs of an experiment, so that the traces recorded from these runs need not
be identically distributed. These nondeterministic choices are said to be demonic,
because we have no control over them.

To facilitate understanding, we first consider hypothesis tests in the weaker set-
ting of angelic nondeterministic choices, where we do assume control. In Section 2.2,
we explain how we adapt these tests to the original setting of demonic choices.

2.1 Hypothesis Testing: Angelic Nondeterminism

Consider a type-〈k, m〉 experiment on a probabilistic process S with finite action
alphabet2 Act . Let Act≤k denote the set of traces with length at most k. Suppose
we can make sure that nondeterministic choices are resolved in the same way in all m

runs, so that every run is associated with the same discrete probability distribution
D on Act≤k.

2This finiteness restriction on Act can be replaced by a finite branching condition on pro-

cesses [Stoelinga and Vaandrager 2003]. In Section 2.3 of the present paper, we introduce the

extended trace distribution machine, which accommodates image finite processes with countably

infinite action alphabet.
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Fix such a trace β. We can view the m runs of this experiment as m independent
Bernoulli trials as follows: during each run, a success occurs if the record for that
run contains exactly β; otherwise, we have a failure. By assumption, these trials
are identically distributed and the common parameter θ is precisely D(β).

It is well-known that the frequency of successes from a Bernoulli sample is a
sufficient statistic for the parameter θ. Intuitively, the number of successes in a
sample contains all the information about θ that is present in the sample. This
suggests we define our hypothesis test in terms of the frequency of successes. In
fact, since Act≤k is finite, we can do so for all traces β simultaneously, by devising
a test with this null hypothesis: “the underlying probability distribution is D.”
This hypothesis is accepted if, for every β, the frequency of successes in the actual
outcome is in the interval [D(β) − r,D(β) + r]; otherwise, it is rejected. Here r is
some appropriate real number between 0 and 1. To discuss how we choose r, we
need to bring in some terminology.

Since hypothesis tests are concerned with yes/no questions, there are two possible
types of errors: false rejection and false acceptance. A good test should guarantee
that the probability of committing either error is low. However, it is often hard to
control these errors independently3, therefore one typically starts with tests that
control false rejections, while keeping false acceptance small. We adopt the same
approach, namely, given any α ∈ [0, 1], we define tests with probability of false
rejection at most α. These tests are said to have level α.

It may seem desirable to have tests that never commit false rejection errors (i.e.,
level 0). However, this strategy leads to rather uninteresting tests, because it forces
acceptance whenever the actual outcome has nonzero probability under the null
hypothesis. To avoid such triviality, one typically fixes a small but nonzero level,
e.g. α = 0.05. This quantity α determines the size of the acceptance region, which
is the set of outcomes that lead to acceptance of the null hypothesis. In particular,
an acceptance region should contain just enough possible outcomes so that the
probability of false rejection is below α. A smaller acceptance region would violate
the level-α requirement, while a larger one would lead to higher probability of false
acceptance errors.

In our case, the size of the acceptance region depends on the value r and we choose
the smallest r that give rise to a level-α test. Now we can define Obs(D, k,m) to be
this acceptance region, namely, the set of possible outcomes such that the frequency
of successes for every β is in the interval [D(β)−r,D(β)+r]. The set of acceptable
type-〈k, m〉 observations for S is in turn given as

⋃
D Obs(D, k,m), where D ranges

over all possible distributions induced by S. The following example illustrate such
hypothesis tests for a fair coin and a biased coin, respectively.

Example 2.1. Consider the two probabilistic processes in Figure 3. We interpret
the symbol a as the action of flipping a coin, while b and c announce on which side
the coin lands. Then A1 models a fair coin, i.e., the uniform distribution on the
set {ab, ac}. Similarly, A2 models a coin with bias 1

3 for heads, i.e., a distribution
assigning probability 1

3 to the trace ab and 2
3 to the trace ac.

3In some cases, it is proven to be impossible to control false acceptance uniformly among all

alternative parameters, while conforming to a certain tolerance of false rejection. We refer to

Chapter 8 of [Casella and Berger 1990].
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2/31/31/21/2

cbc

a a a a

b

Fig. 3. Probabilistic processes A1 and A2.

Suppose α is set at 0.05 and we consider experiments of type 〈2, 100〉. In other
words, we observe 100 runs of length 2 each. The acceptance region for A1 consists
of sequences in which the traces ab occurs between 41 and 59 times, while in the
acceptance region for A2 the trace ab occurs between 24 and 42 times. If ab is
actually observed 45 times, we answer “yes” in the test for A1 and “no” in the test
for A2. Therefore, A1 and A2 are distinguished in our semantics.

Intuitively, the distinguishing power of this testing scenario is a direct conse-
quence of the well-known (weak) law of large numbers. Given any small ε, we can
toss a coin sufficiently many times so that it is extremely unlikely to observe a
sample mean that deviates from the true bias by more than ε. This allows us to
“separate” the acceptance regions of two coins with different biases.

It is interesting to note that the observational equivalence, thus obtained, is
independent of the choice of α, because we have the freedom to vary the number
of runs. In general, as α decreases, we must enlarge the acceptance regions for the
two processes in question, possibly increasing the overlap between them. Therefore
more runs need to be performed so that we can find sample points residing in the
difference of the two acceptance regions.

2.2 Hypothesis Testing: Demonic Nondeterminism

In the angelic case, a width-m experiment on the trace distribution machine can
be likened to tossing the same coin m times. Our testing scenario thus boils down
to the problem of distinguishing two coins with different biases. In the demonic
case, a width-m experiment can be likened to tossing a sequence of m coins with
possibly different biases, and our testing scenario reduces to the following (slightly
more complicated) problem.

Suppose we have a sequence S of coins with biases p0, p1, p2, . . . such that every
pi is in a closed interval I ⊆ [0, 1]. Given any m, we devise a hypothesis test for the
first m coins in S as follows: a length-m sequence of heads and tails leads to a “yes”
answer if and only if the frequency of heads falls in the interval [p−r, p+r]. Here p

is the average of p0, . . . , pm−1 and r is chosen as before to guarantee a level-α test.
Suppose there is another coin with bias q 6∈ I and, for each m, we construct a

test for m tosses of the new coin in exactly the same way. (Here the midpoint of
the interval is simply q.) The question we try to answer is: is there an m for which
there exists a sample point that leads to a “yes” answer in the test for p0, . . . , pm−1

but a “no” answer in the test for q, . . . , q?
Again, we can appeal to the weak law of large numbers in the second test, with

repeated tosses of the same coin. As it turns out, the same intuition also applies
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in the first test, despite the fact that the pi’s are possibly different. In Section 9,
we prove an analog of the weak law of large numbers for independent Bernoulli
variables, replacing the bias of a single coin with the average bias of m different
coins (Lemma 9.2). This key observation, together with the fact that p and q are
separated by the closed interval I, allows us to separate two acceptance regions just
as in the angelic case.

Using the same trick of treating all traces in Act≤k simultaneously, we generalize
the above argument on coin tosses to trace distributions. It is therefore important
that the set of all trace distributions of a probabilistic process forms a convex closed
set.

2.3 Extension to Countably Infinite Action Alphabet

So far we have worked with processes with finite action alphabet, so that each
length-k run has finitely many possible outcomes (namely, traces in Act≤k). This
is an important property because our separation argument only works in finite-
dimensional metric spaces. To preserve this property in the case of countably
infinite action alphabet, we add buttons 0, 1, 2, . . . to the trace distribution machine
in Figure 2, yielding the extended trace distribution machine. This is depicted in
Figure 4.

a
reset 1 2

...
0

Fig. 4. The extended trace distribution machine.

At the start of each experiment (i.e., Step (1)), the observer fixes not only
the depth and width of the experiment, but also the breadth. This is done by
pressing exactly one of the buttons l ∈ N, indicating that only the first l actions
{b0, b1, . . . , bl−1} of the alphabet4 are enabled during the entire experiment. We
then proceed exactly as before.

Notice that the type of an experiment now has three arguments: k, l and m.
Given a process S, Obs(S) is defined as the union

⋃
k,l,m Obs(S, k, l,m), where

Obs(S, k, l,m) is the set of type-〈k, l, m〉 acceptable outcomes of S. This induces
an observational equivalence that coincides with trace distribution equivalence, pro-
vided the processes are image finite. The image-finite requirement is necessary for
the various convergence properties that are essential in our proofs. (This is very
much analogous to the situation of LTSs and the trace machine.)

We can think of this new feature of action switches as a “finite testing policy”:
each experiment focuses on a finite number of possibilities. Since the observer may
free an arbitrarily large number of actions, this is a sufficient method of exploring
the entire structure.

4We assume a fixed enumeration of Act (cf. Section 4).
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The rest of this paper studies image finite processes and the extended trace
distribution machine. For brevity, we omit from now on the word ”extended”.

3. PRELIMINARIES

In this section we provide a summary of basic mathematical notions necessary for
our development. In particular, we review materials from real analysis [Kolmogorov
and Fomin 1970; Rudin 1987], probability theory [Cohn 1980; Rudin 1987], statistics
[Casella and Berger 1990; Trivedi 2002] and order theory [Davey and Priestley 1990].
Our reader is encouraged to skip (portions of) this section as he sees fit.

3.1 Metric Spaces

We encounter many times in this paper the notion of “limits”. They come in two
flavors: (i) limit of a sequence of points in some metric space, and (ii) limit of an
increasing sequence in a partially ordered set. We now recall the former, while the
latter is treated in Section 3.4.

Let P denote the set of non-negative real numbers. A metric space is a pair
〈X, dist〉 where X is a set and the function dist : X×X → P satisfies the following:
for all x, y ∈ X,

(1) identity: dist(x, y) = 0 if and only if x = y;

(2) symmetry: dist(x, y) = dist(y, x); and

(3) triangle inequality: dist(x, z) ≤ dist(x, y) + dist(y, z).

We give two familiar examples of metric spaces.

Example 3.1. The n-dimensional space R
n (n ∈ N) together with the Euclidean

distance function:

dist(~x, ~y) :=

√√√√
n∑

i=0

(xi − yi)2.

Example 3.2. The infinite dimensional space [l, u]ω (l, u ∈ R with l < u) together
with the distance function:

dist(~x, ~y) := sup
i∈N

|xi − yi|.

Given an arbitrary metric space 〈X, dist〉, we define the usual notion of an (open)
ε-ball around a point x:

Bε(x) := {y ∈ X | dist(x, y) < ε}.

A sequence of points {xi | i ∈ N} in X converges to a limit x ∈ X if, for every
ε > 0, there is Nε ∈ N such that xi ∈ Bε(x) for all i ≥ Nε. Equivalently, we may
require limi→∞ dist(x, xi) = 0. It is trivial to check that limits must be unique and
that all subsequences converge to the same limit.

The following is a special case of the famous Bolzano-Weierstraß Theorem.

Theorem 3.3. Every bounded infinite sequence over R has a convergent subse-
quence.
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3.2 Probability Spaces

Let Ω be a set. A collection F of subsets of Ω is said to be a σ-field over Ω if F
satisfies the following properties:

(1) Ω ∈ F ;

(2) if X ∈ F , then Ω \ X is also in F (closure under complement); and

(3) if {Xi | i ∈ N} ⊆ F , then
⋃

i∈N
Xi is also in F (closure under countable union).

We have the following familiar theorem about σ-fields.

Theorem 3.4. Let S be any family of subsets of Ω. There exists a smallest
σ-field F over Ω such that S ⊆ F . In that case, we say that F is generated by S.

A probability measure on a σ-field F is a countably additive function m : F →
[0, 1] such that m(Ω) = 1. Countable additivity says that, given any disjoint family
{Xi | i ∈ N} ⊆ F , it must be the case that

m(
⋃

i∈N

Xi) =
∑

i∈N

m(Xi).

If m is a probability measure, the triple 〈Ω, F , m〉 is said to form a probability
space. The set Ω is called the sample space and members of F are called events.

Example 3.5. The powerset of Ω, P(Ω), is a σ-field over Ω. Consider a function
µ : Ω → [0, 1] such that

∑
s∈Ω µ(s) = 1. Then µ induces a function m : P(Ω) →

[0, 1] as follows:

m(X) :=
∑

s∈X

µ(s).

It is easy to check that m is countably additive, hence a probability measure on
P(Ω).

Such a function µ is often called a discrete probability distribution over the set Ω.
The support of µ is defined to be the set supp(µ) := {s ∈ Ω | µ(s) 6= 0}. Note that
the support of a discrete probability distribution is a countable set. If supp(µ) is a
singleton {s}, then µ is called a Dirac distribution and is often written as {s 7→ 1}.
The set of all discrete probability distributions over Ω is denoted by Distr(Ω).

Similarly, we define a sub-probability measure to be a countably additive function
m : F → [0, 1] such that m(Ω) ≤ 1. Thus a discrete sub-distribution is a function
µ : Ω → [0, 1] such that

∑
s∈Ω µ(s) ≤ 1. The set of all such sub-distributions is

denoted SubDistr(Ω).

Example 3.6. Let Ω be the two element set {0, 1} and let µ be a discrete proba-
bility distribution over Ω. Write p for µ(1). This describes a Bernoulli distribution
with parameter p. The two possible outcomes 1 and 0 are often referred to as
success and failure, respectively.

3.3 Statistics

Let 〈Ω, F , m〉 be a discrete probability space generated by the function µ : Ω →
[0, 1]. A random variable is a function X : Ω → R. Intuitively, it is a rule that
assigns a numerical value to each possible outcome of an experiment. Given x ∈ R,
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let [X = x] denote the event {s ∈ Ω | X(s) = x}. The probability mass function
(pmf) associated with X is defined by

pX(x) := m([X = x]) =
∑

s∈[X=x]

µ(s).

Often we write P[X = x] for pX(x). Similarly, we let [X ≥ x] denote the event
{s ∈ Ω | X(s) ≥ x} and write P[X ≥ x] for

∑
s∈[X≥x] µ(s).

The expectation (or expected value) of X, denoted E[X], is given by the sum

E[X] :=
∑

{x∈R | [X=x]6=∅}

x P[X = x].

The variance of X, denoted Var[X], is defined as

Var[X] := E[(X − E[X])2] =
∑

{x∈R | [X=x]6=∅}

(x − E[X])2 P[X = x].

Example 3.7. A Bernoulli variable is a random variable X with range {0, 1}.
Intuitively, it classifies each outcome of an experiment as either success or failure.
The value P[X = 1] = p is called the parameter of the Bernoulli variable. It is
routine to derive E[X] = p and Var[X] = p(1 − p).

We have the following important inequality.

Theorem 3.8. (Chebyshev’s inequality). For every random variable X and t >

0,

P[|X − E[X]| ≥ t] ≤
Var[X]

t2
.

Next we consider hypothesis testing. This is a common method of statistical in-
ference, which refers broadly to the practice of estimating characteristics of an entire
population based on evidence produced by a sample drawn from that population.
The starting point is a pair of complementary hypotheses: the null hypothesis and
the alternative hypothesis. These are complementary statements about the prob-
ability distribution in question. A hypothesis test is a rule that specifies which
sample values lead to the decision that the null hypothesis is accepted (thus the
alternative hypothesis is rejected). This subset of the sample space is called the
acceptance region, while its complement is called the rejection region. We say that
a false negative (or false rejection, type I ) error is committed if the null hypothesis
is true but the test procedure concludes otherwise. Dually, a false positive (or false
acceptance, type II ) error is committed if the null hypothesis is false but is accepted
by the test procedure. A test is said to be of level α (α ∈ [0, 1]) if the probability
of committing a type I error is at most α.

3.4 Partial Orders

A partially ordered set (or poset) is a set P endowed with a binary relation ≤,
which is reflexive, (weakly) antisymmetric and transitive. Given a subset X ⊆ P ,
we write

∨
X for the least upperbound of X, if it exists.

A non-empty subset D of P is directed if every finite subset D′ of D has an
upperbound in D. The least upperbound of a directed set (if it exists) is often
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called a directed limit. The poset P forms a complete partial order (CPO) if it has
a bottom element ⊥ and all directed limits. A function f : P → Q between CPOs
P and Q is monotone if, for all p, p′ ∈ P , p ≤ p′ implies f(p) ≤ f(p′). Such a
function is said to be continuous if it is monotone and, for every directed set D in
P , we have f(

∨
D) =

∨
f(D).

An increasing sequence of elements p0 ≤ p1 ≤ p2 ≤ . . . in P is called a chain.
Chains are typical examples of directed sets and we write lim C for the least up-
perbound of a chain C. In fact, any directed limit can be converted to the limit of
a chain with the same cardinality.

Theorem 3.9. A poset P with ⊥ is a CPO if and only lim C exists for every
non-empty chain C.

Finally, an element c ∈ P is compact if, for every directed set D such that
c ≤

∨
D, there exists p ∈ D with c ≤ p. A CPO P is said to be algebraic if, for all

p, the set {c | c ≤ p and c compact} is directed and p is in fact the limit of this set.

Example 3.10. Let X<ω (resp., Xω) denote the set of finite (resp., infinite) se-
quences over a set X. Then the union of these two sets, denoted X≤ω, forms an
algebraic CPO under the prefix ordering v. The compact elements are precisely
the finite sequences.

Example 3.11. Let X ⇀ Y denote the set of partial functions from X to Y . We
define the information ordering on X ⇀ Y as follows: f ⊆ g if and only if (i)
Dom(f) ⊆ Dom(g) and (ii) for all x ∈ Dom(f), f(x) = g(x). In other words, the
graph of f is a subset of the graph of g, hence the relation is also called the subset
ordering. This gives rise to an algebraic CPO whose compact elements are partial
functions with finite domain.

3.5 Infinite Sequences over [0, 1]

We define a flat ordering on [0, 1]ω as follows: σ ≤[ σ′ if and only if, for all i ∈ N,
σi 6= 0 implies σi = σ′

i. This ordering is very much analogous to the subset ordering
in Example 3.11, since infinite sequences over [0, 1] can be viewed as functions from
N to [0, 1] and we can interpret σi = 0 as “σ undefined at i”. Given an arbitrary
directed limit in this poset, we can always convert it to the limit of an ω-chain.
This is a strengthening of Theorem 3.9 for the special case of [0, 1]ω.

Lemma 3.12. Let D be an arbitrary (not necessarily countable) directed subset
of [0, 1]ω. There is an ω-chain {σ0, σ1, . . .} ⊂ D such that limk→∞ σk =

∨
D.

Proof. First we construct a sequence σ′
0, σ

′
1, . . . as follows: for each i ∈ N,

choose σ′
i ∈ D such that σ′

i(i) = (
∨

D)(i). This is possible due to the definition of
≤[. Then

—set σ0 to be σ′
0;

—for i + 1, set σi+1 to be any upperbound of {σ0, . . . , σi, σ
′
i+1} in D.

Since D is directed, this ω-chain is well-defined. One can easily check that its limit
in fact equals the least upperbound of D.
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Lemma 3.12 is used to prove Lemma 3.13 about infinite sums. Let I be an
arbitrary index set and let {{ci,j}j∈N | i ∈ I} be a set of ω-sequences over [0, 1].
Assuming the infinite sums converge, it is true in general that

∨

i∈I

∑

j∈N

ci,j ≤
∑

j∈N

∨

i∈I

ci,j .

We claim that equality holds under the assumption that {{ci,j}j∈N | i ∈ I} is
directed with respect to ≤[. This can be seen as a special form of the well-known
Monotone Convergence Theorem.

Lemma 3.13. Assume that {{ci,j | j ∈ N} | i ∈ I} is a directed subset of [0, 1]ω

and for all i,
∑

j∈N
ci,j converges to a limit in [0, 1]. Then the sum

∑
j∈N

∨
i∈I ci,j

converges and
∨

i∈I

∑

j∈N

ci,j =
∑

j∈N

∨

i∈I

ci,j .

An obvious corollary of Lemma 3.13 concerns the set of discrete probabilistic
sub-distributions.

Corollary 3.14. Let S be a countable set. The set SubDistr(S) of discrete
probabilistic sub-distributions over S is a CPO with respect to the flat ordering.

Proof. Via an enumeration of S, we view SubDistr(S) as a subset of [0, 1]ω.
Clearly the everywhere-0 distribution is a bottom element. Given any directed
subset ∆, we apply Lemma 3.13 to

{{D(j) | j ∈ N} | D ∈ ∆}

and conclude that the join of ∆ is also a sub-distribution.

4. PROBABILISTIC AUTOMATA

As described in Section 2, our trace distribution machine contains a probabilistic
process which interacts with its environment via an action display and a collection
of buttons. This section makes precise what we mean by a probabilistic process and
its behaviors.

As far as we are concerned, a probabilistic process is a (simple) probabilistic au-
tomaton as introduced by Segala and Lynch [Segala 1995; Segala and Lynch 1995].
This extends the usual nondeterministic automata model by allowing probabilistic
information at the target of each transition. More precisely, every transition leads
to a probability distribution over possible next states, rather than a single state.

For simplicity, we consider systems with no internal actions. All external actions
are taken from a countable set Act , which has a fixed enumeration {bi | i ∈ N}
throughout this paper. Given l ∈ N, we write Act l for the list b0, . . . , bl−1. The set
of finite (resp. infinite) traces is denoted Act<ω (resp. Actω), while the set of all
traces is Act≤ω. Also, we write ε for the empty trace.

Definition 4.1. A probabilistic automaton (PA) is a triple A = (S, s0,∆) where

—S is the set of states,

—s0 ∈ S is the initial state, and
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—∆ ⊆ S × Act × Distr(S) is the transition relation.

We write s
a
→ µ for (s, a, µ) ∈ ∆. Also, we write s

a,µ
;t whenever s

a
→ µ and µ(t) > 0.

To avoid confusion, we sometimes refer to the components of A as SA, s0
A and ∆A.

Intuitively, we can view target distributions in the transition relation ∆ as a
form of probabilistic branching; that is, we think of s

a,µ
;t as a nondeterministic

transition s
a
→ µ followed by a probabilistic transition µ

µ(t)
→ t. In this way, we obtain

an informal notion of the underlying nondeterministic automaton of A, where we
“forget” probabilistic information (i.e., µ(t)) at each probabilistic transition. Thus
inspired, we define paths in a probabilistic automaton A as follows.

Definition 4.2. A path π of A is a (finite or infinite) sequence of the form
s0a1µ1s1a2µ2s2 . . . such that:

—each si (resp., ai, µi) denotes a state (resp., action, distribution over states);

—s0 is the initial state5;

—if π is finite, then it ends with a state;

—si
ai+1,µi+1

; si+1, for each non-final i.

The length of finite path π is the number of transitions occurring in it.

The set of all paths (finite and infinite) of A is denoted Path(A), while the set of
finite paths is denoted Path<ω(A). We write Path≤k(A) for the set of paths with
length at most k. The last state of a finite path π is written last(π). The trace of
π, notation Tr(π), is defined to be the sequence of actions appearing along π, that
is, a1a2a3 . . .. Given F ⊆ Path<ωA and a ∈ Act , we write Succ(F, a) for the set of
paths π′ of the form πaµs with π ∈ F . Similarly for Succ(F, β) where β ∈ Act<ω.

As in the case of nondeterministic automata, we are interested in certain finiteness
properties in branching structure.

Definition 4.3. A PA A is finitely (resp. countably) branching if, for each state

s, the set {〈a, µ〉 | s
a
→ µ} is finite (resp. countable). It is image finite if for each

state s and action a, the set {µ | s
a
→ µ} is finite.

Thus, each state in a finitely branching PA has finitely many outgoing transitions,
while a state in an image finite PA may have infinitely many. In both cases, the
set {t | s

a,µ
;t for some a, µ} could be infinite, since a target distribution µ may have

infinite support. As a result, given a finite trace β ∈ Act<ω, a finitely branching
(or image finite) PA may have infinitely many paths with trace β. This is different
from the case of nondeterministic automata.

Throughout this paper, we focus on image finite probabilistic automata. Since
Act is countable, it is immediate that every image finite probabilistic automaton is
also countably branching. Moreover, each transition leads to a discrete distribution
on states, which has a countable support. Therefore, Path<ω(A) remains countable
and we often take advantage of this fact by imposing an enumeration.

5In other terminology, paths may start from non-initial states.
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4.1 Adversaries and Probabilistic Executions

We now turn to behaviors of probabilistic automata. In the non-probabilistic case,
an execution (or path) is obtained by resolving all nondeterministic choices in a
deterministic fashion. For a probabilistic automaton, we resolve nondeterministic
choices by means of an adversary (or scheduler). Given any finite history leading
to the current state, an adversary returns a discrete sub-distribution over the set
of available next transitions. Therefore, our adversaries are (i) randomized, (ii)
history-dependent, and (iii) partial, in the sense that they may choose to halt the
execution at any time.

Definition 4.4. A (randomized, history-dependent and partial) adversary E of A
is a function

E : Path<ω(A) → SubDistr(Act × Distr(SA))

such that, for each finite path π, E(π)(a, µ) > 0 implies last(π)
a
→ µ.

We write Adv(A) for the set of all adversaries of A. Intuitively, an adversary E

tosses a coin to choose the next transition at every step of the computation of A.
Thus E induces a purely probabilistic “computation tree”. This idea is captured
by the notion of a probabilistic execution.

Definition 4.5. Let E be an adversary of A. The probabilistic execution induced
by E, denoted QE , is the function from Path<ω(A) to [0, 1] defined recursively by

QE(s0) = 1,

QE(πaµs) = QE(π) · E(π)(a, µ) · µ(s).

The set of all probabilistic executions of A is written as ProbExec(A). Essentially,
the function QE assigns probabilities to finite paths according to decisions made by
the adversary E. We shall interpret “QE(π) = p” as: under the control of adversary
E, the automaton A follows path π with probability p. Notice that it need not be
the case that A halts after π. Moreover, if πvπ′, then the event “A follows π′”
implies the event “A follows π”. Therefore QE is not a discrete distribution on the
set of finite paths. However, QE does induce a probability space over the sample
space Path(A) as follows.

Definition 4.6. Let π ∈ Path<ω(A) be given. The cone generated by π is the
following set of paths: Cπ := {π′ ∈ Path(A) | πvπ′}.

Let ΩA := Path(A) be the sample space and let FA be the smallest σ-field
generated by the collection {Cπ | π ∈ Path<ω(A)}. The following theorem states
that QE induces a unique probability measure on FA [Segala 1995].

Theorem 4.7. Let E be an adversary of A. There exists a unique measure mE

on FA such that mE [Cπ] = QE(π) for all π ∈ Path<ω(A).

The measure mE in Theorem 4.7 gives rise to a probability space (ΩA,FA,mE).
In the literature, many authors define probabilistic executions to be such probability
spaces. In this paper, we find it more natural to reason with the function QE , rather
than the induced probability space. Our choices in the definition of paths and the
use of QE simplifies the technical development, for instance in Section 6. By virtue
of Theorem 4.7, the two approaches are equivalent.
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4.2 Trace Distributions

External behaviors of a probabilistic automaton A are obtained by removing the
non-visible elements from probabilistic executions. Since we do not deal with in-
ternal actions, we remove states and distributions of states. This yields a trace
distribution of A, which assigns probabilities to certain sets of traces.

We define trace distributions via a lifting of the trace operator Tr : Path<ω(A) →
Act<ω. The following lemma is needed to show that the lifting is well defined.

Lemma 4.8. For all β ∈ Act<ω and E ∈ Adv(A),
∑

π∈Tr -1(β) QE(π) ≤ 1.

Proof. Induction on the length of β. If β is the empty sequence then Tr -1(β)
consists of the singleton set {s0} and we have

∑
π∈Tr -1(β) QE(π) = QE(s0) = 1.

Consider βa.
∑

π∈Tr -1(βa)

QE(π)

=
∑

π′∈Tr -1(β)

∑

µ:last(π′)
a
→µ

∑

s∈supp(µ)

QE(π′aµs)

=
∑

π′∈Tr -1(β)

∑

µ:last(π′)
a
→µ

∑

s∈supp(µ)

QE(π′) · E(π′)(a, µ) · µ(s)

=
∑

π′∈Tr -1(β)

∑

µ:last(π′)
a
→µ

QE(π′) · E(π′)(a, µ) ·
∑

s∈supp(µ)

µ(s)

=
∑

π′∈Tr -1(β)

∑

µ:last(π′)
a
→µ

QE(π′) · E(π′)(a, µ)

=
∑

π′∈Tr -1(β)

QE(π′) ·
∑

µ:last(π′)
a
→µ

E(π′)(a, µ)

≤
∑

π′∈Tr -1(β)

QE(π′) ≤ 1 by induction hypothesis

Definition 4.9. Let an adversary E of A be given and consider the probabilistic
execution QE : Path<ω(A) → [0, 1]. The trace distribution induced by E is the
function Tr(QE) : Act<ω → [0, 1] given by

Tr(QE)(β) :=
∑

π∈Tr -1(β)

QE(π).

We usually write DE for Tr(QE) and, when it is desirable to leave the adversary
E implicit, we use variables D, K, etc. The set of trace distributions of A is denoted
by TrDist(A).

Similarly to the case of probability executions, each DE induces a probability
measure on the sample space Ω := Act≤ω. There the σ-field F is generated by the
collection {Cβ | β ∈ Act<ω}, where Cβ := {β′ ∈ Ω | βvβ′}.
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Theorem 4.10. Let E be an adversary of A. There exists a unique measure
mE on F such that mE [Cβ ] = DE(β).

Again, mE gives rise to a probability space 〈Ω, F , mE〉, which is elsewhere called
the trace distribution induced by E. We refer to [Segala 1995] for these alternative
definitions and the proofs of Theorems 4.7 and 4.10.

Finally, we define trace distribution inclusion as follows:

A vTD B if and only if TrDist(A) ⊂ TrDist(B).

Trace distribution equivalence is thus: A ≡TD B if and only if TrDist(A) =
TrDist(B).

4.3 Finite Adversaries

Let E be an adversary of a probabilistic automaton A. Given a finite path π, we say
that π is E-reachable if QE(π) 6= 0. Recall that adversaries may choose to halt an
execution at any point. This is reflected by the fact that E(π) is a sub-distribution
on the set of possible next transitions, so the probability of E halting after π is

1 −
∑

〈a, µ〉∈supp(E(π))

E(π)〈a, µ〉.

If E(π) has empty support, then we say E halts after path π. In that case, QE(π′) =
0 for any proper extension π′ of π. We say that E has depth (at most) k if E halts
after every path of length k. This implies that every E-reachable path has length
at most k.

The notion of depth gives a bound on how far an adversary follows each path. We
also wish to talk about the degree of branching in an adversary. A typical approach
is to give a bound on the cardinality of supp(E(π)) for all π. Here we propose a
different definition: E has breadth (at most) l if, for all E-reachable paths π, we
have Tr(π) ∈ (Act l)

<ω.
For all k, l ∈ N, let Adv(A, k, l) denote the set of adversaries of depth k and

breadth l. We say that E is a finite adversary if there exists k, l ∈ N such that
E ∈ Adv(A, k, l). In other words, E is finite if it has both finite depth and finite
breadth. The following lemma follows immediately from the relevant definitions.

Lemma 4.11. Let E ∈ Adv(A, k, l) and π ∈ Path<ω(A) be given. If π is E-
reachable then Tr(π) ∈ (Act l)

≤k.

Finite adversaries are extremely important in our development, because we focus
on reduction of infinite behavior to its finite approximations. This idea will become
clear in Sections 5 and 7. In the meantime, we make some simple observations.

Lemma 4.12. (1 ) If A is an image finite probabilistic automaton and E is an
adversary of A with finite breadth, then supp(E(π)) is finite for every E-
reachable π.

(2 ) There exist image finite probabilistic automaton A and adversary E of A such
that supp(E(π)) is finite for all π but E has infinite breadth.

Proof. For the first claim, suppose π is an E-reachable path in A. By image
finiteness, there are only finitely many a-transitions available at π for each a ∈ Act .
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By finite breadth of E, there are only finitely many a ∈ Act such that E assigns
non-zero probability to transitions labeled a. Therefore, supp(E(π)) is finite.

For the second claim, consider a single-state automaton with countably many
loops such that no two loops carry the same label. Let E be an adversary that
always chooses (with probability 1) a transition carrying a fresh label. Then
supp(E(π)) is a singleton for all π and yet E has infinite breadth.

We extend the notion of finiteness to probabilistic executions: QE is finite if there
is an E′ such that E′ is finite and QE = QE′ . The set of probabilistic executions
induced by adversaries from Adv(A, k, l) is denoted ProbExec(A, k, l).

We define finite trace distributions analogously: DE is finite just in case there
is a finite E′ such that DE = DE′ . The set of trace distributions induced by
adversaries from Adv(A, k, l) is denoted TrDist(A, k, l). Also, we write A vk,l

TD B
whenever TrDist(A, k, l) ⊆ TrDist(B, k, l).

Finally, we use Adv(A, k,−) to denote the set of all adversaries with depth
k (and arbitrary breadth). The same convention applies also to Adv(A,−, l),
ProbExec(A, k,−), etc.

5. OBSERVATIONS

Having defined trace distributions, we move on to the other side of our story:
observations. We begin this section by recalling the procedure of sample collection
from a trace distribution machine. Then we identify samples that are acceptable if
the trace distribution machine operates as specified by a probabilistic automaton
A. A sample O falls into this category just in case there exists a possible sequence
of trace distributions D0, . . . , Dm−1 under which O is an acceptable outcome. Such

samples will constitute the set of observations of A. To save space, we use ~D to
denote (syntactically) D0, . . . , Dm−1. Similarly for ~D′, ~K, etc.

5.1 Sampling

We associate with each experiment a triple 〈k, l, m〉 of natural numbers. We call
this the type of the experiment, which specifies some parameters in the data col-
lection procedure. More precisely, an observer conducts a depth-k, breadth-l and
width-m experiment on a trace distribution machine as follows.

(1) First, the observer presses the button labeled by l, activating the actions in
Act l.

(2) The observer then starts the machine by pushing the reset button.

(3) As the machine executes, the action symbols appearing on the display are
recorded in succession.

(4) When the display becomes empty, or when the observer has recorded k actions,
the machine is reset and recording starts in a fresh column.

(5) The experiment stops when m runs of the machine have been recorded.

During such an experiment, an observer records a sequence β0, . . . , βm−1, where
each βi is a sequence of actions symbols from Act l and has length at most k. We
call such a record O a sample of depth k, breadth l and width m (or simply a
sample of type 〈k, l, m〉). A trace β is said to appear in β0, . . . , βm−1 if β = βi for
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some i. When k, l and m are clear from context, we will write U for the universe
of all possible samples of type 〈k, l, m〉; that is, U := ((Act l)

≤k)m.
We assume the trace distribution machine is governed by a PA A. During each

run, the trace distribution machine chooses a trace β according to some trace
distribution D of A. When the observer presses the reset button, the machine
returns to the initial state of A and starts over with a possibly different trace
distribution of A. Since all actions outside Act l are blocked, and each time the
machine is allowed to perform at most k steps, a run of the trace distribution
machine is essentially governed by a trace distribution from TrDist(A, k, l). Thus,
each sample O of width m is generated by a sequence of m trace distributions from
TrDist(A, k, l).

Let us focus for a moment on a single run. It is possible to record a trace β with
length strictly less than k. This happens whenever the machine halts after display-
ing the sequence β. Therefore, given traces β0 6= β1, the two events “observing
exactly β0” and “observing exactly β1” are mutually exclusive. This holds even
when β0 is a prefix of β1. Based on this interpretation, the probability of recording
exactly β (written PD,k[β]) equals:

—D(β), if the length of β is exactly k;

—D(β) −
∑

a∈Actl
D(βa), otherwise.

Notice that the second clause corresponds to the case in which A halts after β. The
following lemma justifies our definition of PD,k.

Lemma 5.1. For every D ∈ TrDist(A, k, l), the function PD,k : (Act l)
≤k →

[0, 1] is a discrete probability distribution over (Act l)
≤k.

Proof. First we check that the range of PD,k is included in [0, 1]. Let β ∈
(Act l)

≤k be given and let m be the unique probability measure associated with
D (see Theorem 4.10). We have D(β) = m[Cβ ] ∈ [0, 1]. Moreover, the set
{Cβa | a ∈ Act l} is a countable family of pairwise-disjoint members of the σ-algebra
F , therefore the set Cβ \

⋃
a∈Actl

Cβa is measurable. Thus

D(β) −
∑

a∈Actl

D(βa) = m[Cβ \
⋃

a∈Actl

Cβa] ∈ [0, 1].

It remains to verify
∑

β∈(Actl)≤k PD,k[β] = 1. Without loss, assume k ≥ 1.

∑

β∈(Actl)≤k

PD,k[β]

=

k∑

i=0

∑

β∈(Actl)i

PD,k[β] =

k−1∑

i=0

∑

β∈(Actl)i

PD,k[β] +
∑

β∈(Actl)k

PD,k[β]

=

k−1∑

i=0

∑

β∈(Actl)i

(D(β) −
∑

a∈Actl

D(βa)) +
∑

β∈(Actl)k

D(β)
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=

k−1∑

i=0

(
∑

β∈(Actl)i

D(β) −
∑

β∈(Actl)i

∑

a∈Actl

D(βa)) +
∑

β∈(Actl)k

D(β)

=

k−1∑

i=0

(
∑

β∈(Actl)i

D(β) −
∑

β∈(Actl)i+1

D(β)) +
∑

β∈(Actl)k

D(β)

=
∑

β∈(Actl)0

D(β) = D(ε) = 1

Now we put together the m runs in an experiment. Note that each run involves
two distinct types of choices: first the machine chooses a trace distribution D, then
D in turn chooses a trace β. We do not make any assumptions on the first type of
choices. However, once Di is chosen for run i, Di is solely responsible for selecting
a trace βi. That is, for any i 6= j, the choice of βi by Di is independent from
the choice of βj by Dj . Therefore, assuming trace distributions ~D are chosen, the
probability of generating a depth-k sample O = β0, . . . , βm−1 can be expressed as:

P ~D,k[O] :=
m−1∏

i=0

PDi,k[βi].

For a set O of such samples, we have P ~D,k[O] :=
∑

O∈O P ~D,k[O].
Finally, we make a quick remark about PD,k. Namely, if two trace distributions

from TrDist(A, k, l) induce the same discrete distribution on (Act l)
≤k, then they

must be identical.

Lemma 5.2. The function P−,k : TrDist(A, k, l) → Disc((Act l)
≤k) is one-to-

one.

Proof. We will give a left inverse of P−,k. Let D ∈ TrDist(A, k, l) be given.
Define a function D′ : (Act l)

≤k → [0, 1] as follows:

D′(β) =
∑

βvβ′;β′∈(Actl)≤k

PD,k[β′].

Using a (backwards) inductive argument on the length of β ∈ (Act l)
≤k, it is easy

to check that D = D′.

5.2 Frequencies

Our statistical analysis is based on the frequencies with which finite traces from
(Act l)

≤k appear in a sample O. Formally, the frequency of β in O is given by:

freq(O)(β) :=
#{i | 0 ≤ i < m and β = βi}

m
.

Although each run is governed by a possibly different distribution, we can still
obtain useful information from frequencies of traces. This is done as follows. Fix k,
l, m, ~D and β ∈ (Act l)

≤k. For each 0 ≤ i ≤ m− 1, we say that a success occurs at
the i-th run just in case the observer records exactly β at the i-th run. Thus, the
probability of a success at the i-th run is given by PDi,k[β]. This can be viewed
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as a Bernoulli distribution with parameter PDi,k[β]. Let Xi denote such a random
variable. Then the random variable Z := 1

m

∑m
i=1 Xi represents the frequency of

successes in the m trials governed by ~D. Moreover, the expected value of this
frequency is:

E
~D,k
β := EZ = E(

1

m

m−1∑

i=0

Xi) =
1

m

m−1∑

i=0

E(Xi) =
1

m

m−1∑

i=0

PDi,k[β].

Notice that both freq(O) and E
~D,k can be viewed as points in the metric space

[0, 1](Actl)
≤k

with distance function6 dist(~u,~v) := supβ∈(Actl)≤k |uβ − vβ |. Thus

dist(freq(O),E
~D,k) provides a very natural way to quantify the deviation between

freq(O) and E
~D,k. This plays a central role in classifying acceptable outcomes of

~D.

5.3 Acceptable Outcomes: Motivation

Returning to our original goal, we would like to define a set of acceptable outcomes
of A. This is done by defining a set of acceptable outcomes for each sequence ~D

of trace distributions. Thus, in the terminology of hypothesis testing, we develop
a test with this null hypothesis: the sample O is generated by the sequence ~D.

Fix an α ∈ (0, 1) as the desired level of the test. Also fix the sample type 〈k, l, m〉.

The set Obs( ~D, k, l,m, α) of acceptable outcomes should then satisfy the following:

(1) P ~D,k[Obs( ~D, k, l,m, α)] ≥ 1 − α, and

(2) P ~D′,k[Obs( ~D, k, l,m, α)] is minimized for different choices of ~D′.

Condition 1 says the probability of false rejection (i.e., rejecting O as a sample

generated by ~D while it is so) is at most α. Condition 2 says the probability of false

acceptance (i.e., accepting O as a sample generated by ~D while it is not) should
be reasonably small. Note that the probability of false acceptance depends highly
upon the choice of ~D′. Loosely speaking, if ~D and ~D′ are very close to each other,
then the probability of false acceptance becomes very high.

The design of our test stems from the concept of interval estimation. After
each experiment, we try to make an educated guess about the trace distributions
governing our machine, based on the sample just observed.

In case the m trials are identically distributed, i.e., controlled by the same trace
distribution D, one typically uses freq(O)(β) as an estimator for the value PD,k[β].
(By virtue of Lemma 5.2, this also gives an estimator for D.) Since the probability
of making exactly the right guess is small, an interval around freq(O)(β) is used to
guarantee that the guess is correct with probability 1−α, where α is the prescribed
level. That is, if freq(O)(β) is observed, then our guess is PD,k[β] falls in the
interval [freq(O)(β) − r, freq(O)(β) + r], where r depends on the level α.

6This metric is chosen (instead of the usual Euclidean metric) because it generalizes easily

to higher dimensional cases. For instance, consider the space [0, 1]Act
<ω

with dist ′(~u,~v) :=

supβ∈Act<ω |uβ − vβ |. Then, given any two points ~u,~v ∈ [0, 1](Actl)
≤k

, the distance between

them in [0, 1](Actl)
≤k

coincides with the distance in [0, 1]Act
<ω

.
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Inverting this interval around PD,k[β], we obtain a set of values for freq(O)(β),
namely, the interval [PD,k[β] − r,PD,k[β] + r]. If a frequency from this interval
is actually observed, then our guess about PD,k[β] would be correct. Thus, a
frequency vector freq(O) is deemed acceptable if, for all β, freq(O)(β) is within the
appropriate interval around PD,k[β].

In the formal definitions that follow, the situation is slightly different: we do not
always have the same trace distribution in all m trials. Thus we cannot give an
estimate to the value PD,k[β] for a single trace distribution D. Instead, we use

freq(O)(β) as an estimator for E
~D,k
β = 1

m

∑m
i=1 PDi,k[β], an average from the m

trace distributions.

5.4 Acceptable Outcomes: Definition

As explained above, we accept a sample O if freq(O) is within some distance r of

the value E
~D,k. Our task is to find an appropriate r ∈ [0, 1] such that Condition 1

is satisfied. Moreover, for Condition 2, we need to minimize r in order to reduce
the probability of false acceptance.

Recall that the (closed) ball centered at E
~D,k with radius r is given by:

Br(E
~D,k) := {v ∈ [0, 1](Actl)

≤k

| ∀β ∈ (Act l)
≤k, |v(β) − E

~D,k
β | ≤ r}.

Then freq -1(Br(E
~D,k)) is the set of samples whose frequencies deviate from the

average E
~D,k by at most r.

Definition 5.3. Fix k, l,m ∈ N and a sequence ~D of trace distributions from
TrDist(A, k, l). Let

r̄ := inf{r | P ~D,k[freq -1(Br(E
~D,k))] > 1 − α}.

The set of type-〈k, l, m〉 acceptable outcomes of ~D (with level α) is defined to be:

Obs( ~D, k, l,m, α) := freq -1(Br̄(E
~D,k)) = {O | dist(freq(O),E

~D,k) ≤ r̄}.

The set of type-〈k, l, m〉 acceptable outcomes of A (with level α) is then:

Obs(A, k, l,m, α) :=
⋃

~D∈(TrDist(A,k,l))m

Obs( ~D, k, l,m, α).

Example 5.4. Let Act be {a, b, c} and α be 0.05. Consider the automaton of

Figure 5 with a nondeterministic choice between two branches and let ~D be a
sequence of 10 trace distributions generated by: 4 adversaries that choose the left
branch with probability 1 and 6 that choose the right branch with probability 1.

a

b, 1/2 c, 1/2

Figure 5
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Then the average of the 10 induced trace distributions assign the value 0.4 to
a and 0.3 to each of b and c. Notice that the frequency of a in every possible
outcome is 0.4. Thus the following two outcomes have the greatest distance from
the average: the one in which b never occurs and the one in which c never occurs.
It is easy to verify that Obs( ~D, 1, 3, 10, 0.05) contains all but these two outcomes.

It is interesting to note that, while our notion of acceptable outcomes captures the
clustering of samples around the expected value, it often fails to capture individual
outcomes with relatively high probability. We illustrate this point with the following
example.

Example 5.5. Consider an almost fair coin, say, with 0.51 for heads and 0.49
for tails. Suppose we toss this coin 10 times. The most likely outcome, all heads,
has frequency vector 〈1, 0〉, which lies very far from the expected frequency of
〈0.51, 0.49〉. In fact, it is easy to check that for α = 0.005, this most likely outcome
is rejected.

Finally, we define our notion of observation preorder based on acceptable out-
comes.

Definition 5.6. Let A,B be probabilistic automata and let α ∈ (0, 1) be given.
We write A ≤α B if, for all k, l,m ∈ N, Obs(A, k, l,m, α) ⊂ Obs(A, k, l,m, α). We
say that A and B are observationally indistinguishable up to level α just in case
A ≤α B and B ≤α A.

6. MORE ON PROBABILISTIC EXECUTIONS AND TRACE DISTRIBUTIONS

This section presents some basic results on probabilistic executions and trace distri-
butions. First we give an explicit characterization of probabilistic executions. This
characterization is then used to prove that the set of trace distributions, TrDist(A),
is closed under convex combinations. Finally, we describe a method of constructing
an adversary from an infinite sequence of adversaries.

6.1 Characterizing Probabilistic Executions

By definition, a probabilistic execution QE is a mapping from Path<ω(A) to [0, 1],
induced by some adversary E of a probabilistic automaton A. Hence we can view Q

as an operator from the set of adversaries of A to the function space Path<ω(A) →
[0, 1]. This section provides an explicit characterization of the image of Q. In other
words, given an arbitrary function Q : Path<ω(A) → [0, 1], we determine whether
Q = QE for some adversary E of A.

Clearly, if Q is induced by some E, it must satisfy the following properties.

(1) Q(s0) = 1 and, whenever π is a prefix of π′, Q(π) ≥ Q(π′) (i.e., Q is antitone
with respect to the prefix ordering).

(2) Given π, a, µ, s0, s1 such that last(π)
a
→ µ and s0, s1 ∈ supp(µ), we have

Q(πaµs0)

µ(s0)
=

Q(πaµs1)

µ(s1)
.

We call this property the consistency of Q.
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(3) Given π ∈ Path<ω(A) with Q(π) 6= 0, let Sπ denote the set of (a, µ) such that

last(π)
a
→ µ. For each (a, µ) ∈ Sπ, fix any sa,µ ∈ supp(µ). Then

∑

(a,µ)∈Sπ

Q(πaµsa,µ)

Q(π) · µ(sa,µ)
≤ 1.

(Notice that, if Q is consistent, the choice of sa,µ does not affect the summand.)

To see that these conditions are not only necessary but also sufficient to character-
ize the set of probabilistic executions, we note the following. Condition (1) expresses
that, if π v π′, then the event “A follows π′” is included in the event “A follows
π′”. Also, any probabilistic execution begins at the start state s0 with probability
1. Condition (2) is more subtle. Recall that QE(πaµs) = QE(π) ·E(π)(a, µ) ·µ(s).

If Q(π) > 0, we can recover the value E(π)(a, µ) from Q by setting Q(πaµs)
Q(π) ·µ(s) for

some state s ∈ supp(µ), provided any choice of s yields the same quotient. This is
precisely Condition(2). Condition (3) then says the sum of E(π)(a, µ) over all possi-

ble transitions last(π)
a
→ µ must be under 1, i.e., E(π) is a discrete sub-distribution

on Sπ.
Given a function Q with these properties, we construct an adversary EQ as

follows: for π, a and µ, define EQ(π)(a, µ) to be

—0, in case Q(π) = 0 or last(π)
a
→ µ is not a transition in A;

— Q(πaµs)
Q(π)·µ(s) otherwise, where s is some state in supp(µ).

By Conditions 2 and 3, EQ is well-defined and EQ(π) is a discrete sub-distribution

for every π. Moreover, EQ(π)(a, µ) 6= 0 only if last(π)
a
→ µ is a transition in A,

therefore EQ is an adversary for A. It remains to prove Q = QEQ
(so that we have

a right inverse of the operation Q).

Lemma 6.1. For all π ∈ Path<ω(A), we have Q(π) = QEQ
(π).

Proof. By induction on the length of π. If π consists of just the initial state,
then Q(π) = 1 = QEQ

(π).
Now consider π′ of the form πaµs. If Q(π) = 0, then Q(π′) = 0 by Condition 1.

Also by induction hypothesis, QEQ
(π) = Q(π) = 0. Hence

QEQ
(π′) = QEQ

(π) · EQ(π)(a, µ) · µ(s) = 0 = Q(π′),

regardless of the values of EQ(π)(a, µ) and µ(s).
Otherwise, we may choose π′′ as in the definition of EQ(π)(a, µ). Let s′ denote

last(π′′). Then

QEQ
(π′) = QEQ

(π) · EQ(π)(a, µ) · µ(s) definition QEQ

= Q(π) ·
Q(π′′)

Q(π) · µ(s′)
· µ(s) I.H. and definition of E(π′)(a, µ)

=
Q(π′′) · µ(s)

µ(s′)

= Q(π′). consistency of Q
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This completes the proof of the following characterization theorem.

Theorem 6.2 Characterization of probabilistic executions. For all Q :
Path<ω(A) → [0, 1], Q is the probabilistic execution induced by some adversary E

of A if and only if Q satisfies Conditions (1), (2) and (3).

6.2 Convex Combinations

Recall that probabilistic executions are mappings from Path<ω(A) to [0, 1]. Thus
it makes sense to talk about convex combinations of two (or finitely many) of them.
Similarly for trace distributions, which are mappings from Act<ω to [0, 1].

Lemma 6.3. Let p ∈ [0, 1] be given and let E0 and E1 be adversaries of A. There
exists an adversary E of A such that QE = p · QE0

+ (1 − p) · QE1
.

Proof. Define Q := p ·QE0
+(1−p) ·QE1

. By Theorem 6.2, it suffices to verify
Conditions (1), (2) and (3). The first two are straightforward. For Condition (3),
let π, Sπ and {sa,µ | 〈a, µ〉 ∈ Sπ} be given as stated. Then

∑

(a,µ)∈Sπ

Q(πaµsa,µ)

Q(π) · µ(sa,µ)

=
∑

(a,µ)∈Sπ

p · QE0
(πaµsa,µ) + (1 − p) · QE1

(πaµsa,µ)

Q(π) · µ(sa,µ)

=
∑

(a,µ)∈Sπ

p · QE0
(π) · E0(π)(a, µ) + (1 − p) · QE1

(π) · E1(π)(a, µ)

Q(π)

=
p · QE0

(π) ·
∑

(a,µ)∈Sπ
E0(π)(a, µ) + (1 − p) · QE1

(π) ·
∑

(a,µ)∈Sπ
E1(π)(a, µ)

Q(π)

≤
p · QE0

(π) + (1 − p) · QE1
(π)

Q(π)
= 1

The next lemma says that Tr preserves convex combinations. This follows im-
mediately from the definition of Tr : (Path<ω(A) → [0, 1]) → (Act<ω → [0, 1]) (cf.
Section 4.2).

Lemma 6.4. Let p ∈ [0, 1] be given and let E0 and E1 be adversaries of A. Then

Tr(p · QE0
+ (1 − p) · QE1

) = p · Tr(QE0
) + (1 − p) · Tr(QE1

).

Corollary 6.5. The set of trace distributions of A is closed under convex com-
binations.

Proof. By Lemma 6.3 and Lemma 6.4.

We have one more corollary, which concerns the discrete probability distribution
PD,k (cf. Section 5.1).

Corollary 6.6. For all k, l ∈ N, the set {PD,k | D ∈ TrDist(A, k, l)} is closed
under convex combinations.

Proof. By Corollary 6.5 and the definition of PD,k.
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6.3 Limit Construction

Suppose we have an infinite sequence {Ei}i∈N of adversaries. From this, we con-
struct an infinite decreasing sequence of sequences: (i) set the initial sequence
{E0

j }j∈N to be {Ei}i∈N; (ii) for each n ∈ N, define a subsequence {En+1
j }j∈N

of {En
j }j∈N. While choosing the appropriate subsequences, we obtain a function

Q : Path<ω(A) → [0, 1] such that Q is the probabilistic execution induced by some
adversary E. Once we specify our notion of convergence, such E is an obvious
candidate for the limit of {Ei}i∈N.

By assumption, A is countably branching, hence Path<ω(A) is countable. Let
{πn}n∈N be an enumeration of that set. Given n ∈ N, the sequence {QEn

j
(πn)}j∈N

is an infinite sequence in [0, 1]. By Theorem 3.3, there is a convergent subsequence.
Let {En+1

j }j∈N be a subsequence of {En
j }j∈N such that {QEn+1

j
(πn)}j∈N converges.

Define

Q(πn) := lim
j→∞

QEn+1
j

(πn).

Given an adversary En
j as above, let index (En

j ) denote the index of En
j in the

original sequence {Ei}i∈N.
The idea here is, at each stage n, we decide the value of Q at path πn. Moreover,

we remove those adversaries whose probabilistic executions (evaluated at πn) fail
to converge to Q(πn), taking care that we still have infinitely many adversaries left.
As a consequence, at every stage after n, the probabilistic executions of remain-
ing adversaries converge to the same limit at πn. This claim is formalized in the
following lemma.

Lemma 6.7. For all n < n′, {QEn′

j
(πn)}j∈N converges to Q(πn).

Proof. For all n < n′, {En′

j }j∈N is a subsequence of {En
j }j∈N. Hence sequence

{QEn′

j
(πn)}j∈N converges to the same limit as {QEn

j
(πn)}j∈N, namely, to Q(πn).

Corollary 6.8. Let S ⊆ N be finite. For all n ∈ S, {Q
E

max(S)+1
j

(πn)}j∈N

converges to Q(πn).

The meaning of Corollary 6.8 is best explained by: “finitely many is the same
as just one.” Instead of taking the defining sequence of Q(πn) for each n, we can
simply go to a much later stage in the construction where, for each n ∈ S, the
weight on πn is guaranteed to converge to the right value. Notice that it is essential
that S is finite. With this idea in mind, we prove that Q satisfies Conditions (1), (2)
and (3) in Section 6.1; then we apply Theorem 6.2 to conclude there is an adversary
E with QE = Q.

By definition, Q(s0) = 1; moreover, the next lemma shows that Q is antitone
with respect to prefix ordering on Path<ω(A). Therefore Q satisfies Condition (1).

Lemma 6.9. Let π, π′ ∈ Path<ω(A) be given. Suppose π is a prefix of π′, then
Q(π) ≥ Q(π′).

Proof. Choose n, n′ ∈ N such that π = πn and π′ = πn′ . Let N := max(n, n′).
Recall that for every j, we have QEN+1

j
(π) ≥ QEN+1

j
(π′). Therefore, by Corol-
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lary 6.8,

Q(π) = lim
j→∞

QEN+1
j

(π) ≥ lim
j→∞

QEN+1
j

(π′) = Q(π′).

The following lemmas verify Conditions (2) and (3).

Lemma 6.10 Condition (2). Let n, n1, n2 ∈ N be given. Suppose πn1
= πnaµs1,

πn2
= πnaµs2, last(πn)

a
→ µ and s1, s2 ∈ supp(µ). Then

Q(πn1
)

µ(s1)
=

Q(πn2
)

µ(s2)
.

Proof. Let N := max(n1, n2). By Corollary 6.8 and the consistency of QEN+1
j

,

we have

Q(πn1
)

µ(s1)
= lim

j→∞

QEN+1
j

(πn1
)

µ(s1)
= lim

j→∞

QEN+1
j

(πn2
)

µ(s2)
=

Q(πn2
)

µ(s2)
.

Lemma 6.11 Condition (3). Let π be a path in Path<ω(A) such that Q(π) 6=

0. Recall that Sπ denotes the set {(a, µ) | last(π)
a
→ µ}. For each (a, µ) ∈ Sπ, let

sa,µ ∈ supp(µ) be given. Then

∑

(a,µ)∈Sπ

Q(πaµsa,µ)

Q(π) · µ(sa,µ)
≤ 1.

Proof. Let {(ak, µk)}k∈N be a (possibly finite) enumeration of Sπ. It suffices
to show that all finite partial sums are below 1. Let K ∈ N be given. For each
0 ≤ k ≤ K, let nk be the index of πakµksak,µk

in the enumeration {πn}n∈N.
Similarly, let n be the index of π. Define N to be max{n0, . . . , nK , n} + 1. Then
by Corollary 6.8 we have

K∑

k=0

Q(πnk
)

Q(π) · µk(sak,µk
)

=
K∑

k=0

limj→∞ QEN
j

(πnk
)

Q(π) · µk(sak,µk
)

By the definition of QEN
j

, this becomes

K∑

k=0

lim
j→∞

QEN
j

(π) · EN
j (π)(ak, µk) · µk(sak,µk

)

Q(π) · µk(sak,µk
)

=
K∑

k=0

lim
j→∞

QEN
j

(π) · EN
j (π)(ak, µk)

Q(π)

= lim
j→∞

QEN
j

(π)

Q(π)

K∑

k=0

EN
j (π)(ak, µk) finite sum

≤ lim
j→∞

QEN
j

(π)

Q(π)
EN

j (π) sub-distribution

= 1. Corollary 6.8
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So far we have presented a construction that yields an adversary from any given
countable sequence of adversaries. Let us now consider two examples in which this
construction fails to provide a sensible “limit”.

Example 6.12. Consider the infinitely branching automaton A drawn in Fig-
ure 6, where all transitions are labeled with symbol a and all target distributions
are Dirac distributions. Consider this sequence {Ek}k∈N of adversaries: each Ek

...

Figure 6

follows the kth branch of A with probability 1 and halts at the end of that branch.
Thus, each Ek induces the trace distribution

{
ak 7→ 1

}
, where ak is the length-k

trace containing all a’s. Intuitively, the limit of this sequence of trace distributions
should assign probability 1 to the infinite trace aa . . .; yet this is not possible, sim-
ply because A has no infinite paths. In this case, our limit construction yields the
everywhere-halting adversary.

Example 6.13. Consider automaton A as in Example 6.12. Take the following
sequence {Ek}k∈N of adversaries: (i) at the start state, each Ek schedules the k-th

transition with probability 2k−1
2k and halts with probability 1

2k ; (ii) item every Ek

halts completely after one step. This sequence of adversaries induce the following
sequence of trace distributions:

{{a 7→
2k − 1

2k
} | k ∈ N}.

Intuitively, this is a converging sequence with limit {a 7→ 1}. However, the limit
of {Ek}k∈N, as constructed in the present section, is again the everywhere-halting
adversary.

In Section 7, we will prove CPO properties of ProbExec(A) and TrDist(A) for
image finite A. In particular, our results imply that image finiteness is sufficient to
remove Counterexample 6.12. In Section 8, we prove that image finiteness implies
TrDist(A, k, l) forms a closed set in the metric space [0, 1]Act

<ω

, thus Counterex-
ample 6.13 is also removed.
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7. CPO PROPERTIES

In an earlier version of this paper [Stoelinga 2002], we proved the following Approxi-
mation Induction Principle (AIP) (cf. [Bergstra and Klop 1986; Baeten et al. 1987])
for probabilistic processes. A very similar result was observed by Segala [Segala
1996], who presented an informal proof sketch.

Theorem 7.1 AIP. Let A and B be PAs and let B be finitely branching. Then

∀k[A vk
TD B] → A vTD B.

The AIP provides a useful strategy for proving trace inclusion between proba-
bilistic automata. The goal of this section is to strengthen it in a more abstract
setting, thus obtaining the original Theorem 7.1 as a corollary. In particular, we
relax the finite branching requirement to image finiteness.

Given an image finite probabilistic automaton A, we define partial orders on
these three sets: Adv(A), ProbExec(A) and TrDist(A). We show that, in the case
of TrDist(A), we obtain an algebraic CPO whose compact elements are precisely
the finite trace distributions defined in Section 4.3. We also prove that the operator
Q : Adv(A) → ProbExec(A) is continuous and bottom preserving, and present an
example to illustrate that the operator Tr : ProbExec(A) → TrDist(A) is not
continuous.

7.1 Image Finite Automata

Every adversary E for an image finite automaton A is bounded in the following
sense: given any finite trace β and a small, positive error ε, it is possible to find
a finite set F ⊆ Tr -1(β) such that QE assigns probability at least DE(β) − ε on
F . The finite set F is a uniform bound, in that it depends only on β and ε, but
not on the choice of adversary E. Existence of such a uniform bound is the key to
avoiding counterexamples such as that in Example 6.12.

We now give a formal proof of this boundedness claim. Notice that Lemma 7.2
does not require image finiteness.

Lemma 7.2. For all F ⊂ Path<ω(A) and β ∈ Act<ω, we have

∑

π∈F

QE(π) ≥
∑

π′∈Succ(F,β)

QE(π′),

provided both sums converge.

Proof. By induction on the length of β. If β is the empty sequence, then
Succ(F, β) = F and the inequality trivially holds. Consider βa and let π′ ∈
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Succ(F, βa) be given. By definition of QE , we have the following.

∑

π′∈Succ(F,βa)

QE(π′)

=
∑

π′′∈Succ(F,β)

∑

µ:last(π′′)
a
→µ

∑

s∈supp(µ)

QE(π′′) · E(π′′)(a, µ) · µ(s)

=
∑

π′′∈Succ(F,β)

QE(π′′) · (
∑

µ:last(π′′)
a
→µ

E(π′′)(a, µ) ·
∑

s∈supp(µ)

µ(s))

=
∑

π′′∈Succ(F,β)

QE(π′′) · (
∑

µ:last(π′′)
a
→µ

E(π′′)(a, µ))

Since E is a discrete sub-distribution, the inner sum is at most 1 and the whole
expression is at most

∑
π′′∈Succ(F,β) QE(π′′). Applying the induction hypothesis,

this is at most
∑

π∈F QE(π).

Lemma 7.3. Assume A is image finite. Let ε > 0 be given. For every finite
path π and action symbol a, there exists finite F ⊆ Succ(π, a) such that for every
adversary E,

∑
π′∈Succ(π,a)\F QE(π′) ≤ ε.

Proof. Since A is image finite, there are finitely many µ’s such that last(π)
a
→ µ.

Call them µ0, . . . , µn−1. For each 0 ≤ i ≤ n−1, choose a finite subset Fi ⊆ supp(µi)
such that

∑

s∈supp(µi)\Fi

µi(s) ≤
ε

n
.

Define F to be
⋃

0≤i≤n−1{πaµis | s ∈ Fi}. Clearly F is finite. For any adversary
E, we have

∑

π′∈Succ(π,a)\F

QE(π′)

=
∑

0≤i≤n−1

∑

s∈supp(µi)\Fi

QE(π) · E(π)(a, µi) · µi(s)

≤
∑

0≤i≤n−1

∑

s∈supp(µi)\Fi

µi(s) QE(π) ≤ 1;E(π)(a, µi) ≤ 1

≤ n ·
ε

n
= ε.

Lemma 7.4. Assume A is image finite. Let ε > 0 and β ∈ Act<ω be given. There
exists finite Fβ ⊆ Tr -1(β) such that for all adversaries E,

∑
π∈Tr -1(β)\Fβ

QE(π) ≤ ε.

Proof. We proceed by induction on the length of β. If β is the empty sequence,
then take Fβ to be the singleton {s0}.

Consider a finite trace βa and assume the induction hypothesis holds for β.
Choose finite Fβ such that for all E, dE :=

∑
π∈Tr -1(β)\Fβ

QE(π) ≤ ε
2 . By
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Lemma 7.2, we have for all E,
∑

π′∈Succ(Tr -1(β)\Fβ ,a)

QE(π′) ≤ dE ≤
ε

2
.

If Fβ is empty, then
∑

π′∈Tr -1(βa)\∅

QE(π′) =
∑

π′∈Tr -1(βa)

QE(π′)

=
∑

π′∈Succ(Tr -1(β),a)

QE(π′)

=
∑

π′∈Succ(Tr -1(β)\Fβ ,a)

QE(π′)

≤
ε

2
≤ ε.

Otherwise, let π0, . . . , πn be an enumeration of Fβ and let 0 ≤ i ≤ n be given.
By Lemma 7.3, we may choose Fi ⊆ Succ(πi, a) such that for all E, cE,i :=∑

π′∈Succ(πi,a)\Fi
QE(π′) ≤ ε

2(n+1) . Let F be
⋃

0≤i≤n Fi. We have for all E,

∑

π∈Tr -1(βa)\F

QE(π) =
∑

0≤i≤n

∑

π′∈Succ(πi,a)\Fi

QE(π′) +
∑

π′∈Succ(Tr -1(β)\Fβ ,a)

QE(π′)

≤ (
∑

0≤i≤n

cE,i) + dE

≤ (n + 1) ·
ε

2(n + 1)
+

ε

2
= ε.

7.2 Adversaries

We define the flat ordering on Adv(A): E ≤[ E′ if, for all finite executions π, action
symbols a and distributions µ, E(π)(a, µ) 6= 0 implies E(π)(a, µ) = E ′(π)(a, µ).
As the name suggests, this is essentially the same ordering on [0, 1]ω defined in
Section 3.5.

Let D be a directed subset of Adv(A). Given π ∈ Path<ω(A), a ∈ Act and

µ ∈ Distr(SA), define Ê(π)(a, µ) :=
∨

E∈D E(π)(a, µ). In other words, Ê is the

pointwise join of D in the function space Path<ω(A) × Act ×Distr(SA) −→ [0, 1].

Our task is to show that Ê is an adversary.
Notice that Ê(π) assigns non-zero probability to 〈a, µ〉 if and only if some E in

D does. Hence

〈a, µ〉 ∈ supp(Ê(π)) ⇒ ∃E ∈ D, 〈a, µ〉 ∈ supp(E(π)) ⇒ last(π)
a
→ µ.

Fix π ∈ Path<ω(A); we need to show Ê(π) is a sub-distribution. By the countable
branching assumption, we may choose a countable subset Xπ of Act ×Distr(SA)
such that E(π) is a sub-distribution over Xπ for every adversary E. Since D is
directed, the set {E(π) | E ∈ D} is also directed. We can now apply Corollary 3.14

to conclude that Ê(π) is also a sub-distribution. This gives the following lemma.
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Lemma 7.5. For all finite executions π, Ê(π) is a probabilistic sub-distribution
over Act ×Distr(SA).

Hence the set Adv(A) equipped with the flat ordering is a CPO.

Theorem 7.6. For a countably branching probabilistic automaton A, the set of
adversaries for A forms a CPO.

Proof. Apply Lemma 7.5 and take the everywhere-0 adversary to be the bottom
element.

7.3 Probabilistic Executions

Again we consider the flat ordering: given Q1, Q2 ∈ ProbExec(A), we say that
Q1 ≤[ Q2 if for all π ∈ Path<ω(A), Q1(π) 6= 0 implies Q1(π) = Q2(π).

Let D be a directed subset of ProbExec(A). We claim that the pointwise join of
D in the function space Path<ω(A) −→ [0, 1] is also a probabilistic execution. By
Theorem 6.2, it suffices to show

∨
D satisfies the three properties in Section 6.1.

Conditions (1) and (2) follow directly from the definition of pointwise joins. To
verify Condition (3), we first apply Lemma 3.12 to obtain an increasing ω-chain
C = {Qi}i∈N ⊆ D such that

∨
C =

∨
D.

Lemma 7.7. The function
∨

C satisfies Condition (3).

Proof. Since C is increasing,
∨

C(π) = limi→∞ Qi(π) for all π ∈ Path<ω(A).
Suppose

∨
C(π) 6= 0 and, by monotonicity, we may assume without loss of gener-

ality Qi(π) 6= 0 for all i. For each 〈a, µ〉 ∈ Xπ, fix sa,µ ∈ supp(µ). Then

∑

〈a, µ〉∈Xπ

∨
C(πaµsa,µ)∨

C(π) · µ(sa,µ)

=
∑

〈a, µ〉∈Xπ

limi→∞ Qi(πaµsa,µ)

limi→∞ Qi(π) · µ(sa,µ)

=
∑

〈a, µ〉∈Xπ

lim
i→∞

Qi(πaµsa,µ)

Qi(π) · µ(sa,µ)
non-zero denominator

=
∨

F∈P<ω(Xπ)

∑

〈a, µ〉∈F

lim
i→∞

Qi(πaµsa,µ)

Qi(π) · µ(sa,µ)

=
∨

F∈P<ω(Xπ)

lim
i→∞

∑

〈a, µ〉∈F

Qi(πaµsa,µ)

Qi(π) · µ(sa,µ)
finite sum

≤ 1

Therefore the set ProbExec(A) equipped with the flat ordering is also a CPO.

Theorem 7.8. For a countably branching probabilistic automaton A, the set of
probabilistic executions of A forms a CPO whose bottom element is that generated
by the everywhere-halting adversary.

Journal of the ACM, Vol. V, No. N, November 2007.



34 · Ling Cheung et al.

7.4 Continuity of Operator Q

Recall that Q is an operator from Adv(A) to ProbExec(A), both of which have a
CPO structure. Naturally, we proceed with a proof that Q is continuous. In fact,
Q is also strict, i.e., bottom preserving.

Lemma 7.9. The operator Q is monotone.

Proof. Let E1 ≤[ E2 be given. We show that QE1
≤[ QE2

, by induction
on the length of execution π. The base case is trivial. Take an execution π′

of the form πaµs and assume QE1
(π′) 6= 0. Then QE1

(π) 6= 0; applying I.H.,
we have QE1

(π) = QE2
(π). On the other hand, we have E1(π)(a, µ) 6= 0, thus

E1(π)(a, µ) = E2(π)(a, µ). Hence

QE1
(π′) = QE1

(π) · E1(π)(a, µ) · µ(s) = QE2
(π) · E2(π)(a, µ) · µ(s) = QE2

(π′).

Lemma 7.10. Let D be a directed set of adversaries. We have
∨

E∈D QE =
QW

D.

Proof. Induction on the length of execution π. Since QE(s0) = 1 for every
adversary E, the base case is trivial. For the inductive step, take an execution of
the form πaµs and let Ê denote

∨
D. The following holds:

Q bE(πaµs) = Q bE(π) · Ê(π, a, µ) · µ(s)

=
∨

E∈D

QE(π) ·
∨

E′∈D

E′(π, a, µ) · µ(s) I.H. and definition Ê

=
∨

E,E′∈D

QE(π) · E′(π, a, µ) · µ(s)

=
∨

E∈D

QE(π) · E(π, a, µ) · µ(s) D directed and Lemma 7.9

=
∨

E∈D

QE(πaµs).

Theorem 7.11. The map Q : Adv(A) → ProbExec(A) is strictly continuous.

7.5 Trace Distributions

Finally, we treat the case of trace distributions. Define ≤[ in exactly the same way:
given D1, D2 ∈ TrDist(A), we say that D1 ≤[ D2 if for all β ∈ Act<ω, D1(β) 6= 0
implies D1(β) = D2(β).

First we show the join of an ω-chain of trace distributions is again a trace
distribution. Let {Ei}i∈N be a sequence of adversaries for A such that the set
C := {DEi

| i ∈ N} forms a chain. We need to find a adversary E such that

DE =
∨

C. For convenience, let Di denote DEi
and let D̂ denote

∨
C.

Let {πn}n∈N be an enumeration of Path<ω(A). We apply the construction of Sec-
tion 6.3 to {Ei}i∈N and {πn}n∈N to obtain a sequence {{En

j }j∈N}n∈N of sequences
of adversaries for A and Q ∈ ProbExec(A). We claim that the trace distribution

associated with Q is precisely D̂, thus any adversary E inducing Q also induces D̂.
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Lemma 7.12. For all β ∈ Act<ω,
∑

π∈Tr -1(β) Q(π) ≤ D̂(β).

Proof. Let β ∈ Act<ω be given. Let S be the set of n such that Tr(πn) = β.

It suffices to prove for all finite Y ⊆ S,
∑

n∈Y Q(πn) ≤ D̂(β).
Let N := max(Y ). By definition of Q and Corollary 6.8, we have

Q(πn) = lim
j→∞

QEn+1
j

(πn) = lim
j→∞

QEN+1
j

(πn).

Thus, moving the finite sum into the limit, we have
∑

n∈Y

Q(πn) =
∑

n∈Y

lim
j→∞

QEN+1
j

(πn) = lim
j→∞

∑

n∈Y

QEN+1
j

(πn).

For each j ∈ N, we have
∑

n∈Y QEN+1
j

(πn) ≤ DEN+1
j

(β) ≤ D̂(β), hence the limit

is also below D̂(β).

Lemma 7.13. For all β ∈ Act<ω,
∑

π∈Tr -1(β) Q(π) ≥ D̂(β).

Proof. Let β ∈ Act<ω be given. Without loss of generality, assume that D̂(β) 6=

0. It suffices to show, for arbitrary 0 < ε < D̂(β),
∑

π∈Tr -1(β) Q(π) ≥ D̂(β)− ε. Let

such ε be given. By Lemma 7.4, choose finite F ⊆ Tr -1(β) such that for all i ∈ N,
Di(β) −

∑
π∈F QEi

(π) ≤ ε.
Clearly,

∑
π∈Tr -1(β) Q(π) ≥

∑
π∈F Q(π). We will prove that the latter is greater

than or equal to D̂(β) − ε. Since F is finite, we may choose N ∈ N such that
F ⊆ {π0, . . . , πN}. Now we have

∑

π∈F

Q(π) =
∑

{n | πn∈F}

Q(πn) =
∑

{n | πn∈F}

lim
j→∞

QEn+1
j

(πn)

=
∑

{n | πn∈F}

lim
j→∞

QEN+1
j

(πn) Lemma 6.7

= lim
j→∞

∑

{n | πn∈F}

QEN+1
j

(πn) F finite

≥ lim
j→∞

(D
index(EN+1

j )(β) − ε) choice of F

= ( lim
j→∞

D
index(EN+1

j )(β)) − ε C increasing chain

= D̂(β) − ε

Corollary 7.14. For all β ∈ Act<ω,
∑

π∈Tr -1(β) Q(π) = D̂(β).

The following lemma summarizes the results we have obtained so far.

Lemma 7.15. Let C be an increasing ω-chain of trace distributions of an image
finite probabilistic automaton A. Then

∨
C is also a trace distribution of A.

Theorem 7.16. Let D be an arbitrary directed subset of TrDist(A) for an image
finite probabilistic automaton A. Then

∨
D is also a trace distribution of A.

Proof. By Lemma 7.15 and Lemma 3.12.
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Corollary 7.17. Given an image finite probabilistic automaton A, TrDist(A)
is a CPO whose bottom element is generated by the everywhere-halting adversary.

Recall that the trace function Tr : Path<ω(A) → Act<ω induces a map Tr :
ProbExec(A) → TrDist(A). The example below shows that this map is not contin-
uous.

Example 7.18. Consider an automaton with two outgoing a transitions from the
initial state. Let Q1 be a probabilistic execution that with probability 1

2 does the
first transition and with probability 1

2 halts. Let Q2 be a probabilistic execution
that does the first transition with probability 1

2 and the second transition with
probability 1

2 . Then Q1 ≤ Q2. However, it is not the case that Tr(Q1) ≤ Tr(Q2),
since Tr(Q1)(a) = 1

2 6= 1 = Tr(Q2)(a). Therefore Tr is not monotone.

7.6 Algebraicity

In Segala’s proposal of the Approximation Induction Principle [Segala 1996], trace
distributions are ordered pointwise by the usual ordering on R, rather than our flat
ordering. In fact, this alternative also gives rise to a CPO on TrDist(A), but the
resulting structure is not algebraic.

Example 7.19. Consider an automaton with a single a-transition and an ad-
versary E that assigns probability 1 to that transition. Consider the sequence
E0, E1, . . . of adversaries where each Ek chooses the a-transition with probability
1 − 2−k and halts with probability 2−k. Clearly, this infinite sequence converges
monotonically to E under Segala’s ordering; yet E 6= Ek for all k. Therefore E

is not a compact element. Similarly, one can show that every non-trivial trace
distribution is not compact.

We now give a proof that TrDist(A) forms an algebraic CPO under our flat
ordering. (In fact, the same holds for Adv(A) and ProbExec(A), but the character-
izations of compact elements are different.) Recall from Section 4.3 the definition
of finite trace distributions. Essentially, DE is finite if it assigns zero probability
to all but a finite number of traces. The following lemma says that all finite trace
distributions are compact in the CPO 〈TrDist(A), ≤[〉.

Lemma 7.20. Let DE be a finite trace distribution and let D be a directed set
of trace distributions such that DE ≤[

∨
D. Then there exists adversary E ′ with

DE′ ∈ D and DE ≤[ DE′ .

Proof. Let F denote the finite set of traces {β ∈ Act<ω | DE(β) 6= 0}. For each
β ∈ F , choose Eβ with DEβ

∈ D and DEβ
(β) = DE(β). This is possible by the

definitions of ≤[ and
∨

. Since D is directed and F is finite, we may choose E ′ such
that DE′ is in D and is an upperbound of {DEβ

| β ∈ F}. Clearly DE ≤[ DE′ .

Lemma 7.21. Let E be an adversary for A with DE not finite. There exists a
directed set D of trace distributions of A such that DE =

∨
D and yet DE′ < DE

for all DE′ ∈ D.

Proof. Let {β0, β1, . . .} be a prefix-preserving enumeration of Act<ω. That is,
if βm is a prefix of βn, then m ≤ n. This is always possible for the set of finite
words over a countable alphabet.

For each n ∈ N, construct an adversary En as follows: for all π, a and µ,
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—En(π)(a, µ) = E(π)(a, µ) if Tr(π)a is in β0, . . . , βn;

—En(π)(a, µ) = 0 otherwise.

Informally, each En makes the same decisions as E until it reaches a trace not in
β0, . . . , βn, at which point it halts. Since {βn}n∈N preserves prefix, it is easy to
verify that {DEn

| n ∈ N} satisfies these two conditions:

—for all m ≤ n, DEn
(βm) = DE(βm);

—for all m > n, DEn
(βm) = 0.

Clearly, each DEn
is finite. Since DE is infinite, we have DEn

< DE for all
n ∈ N. Also {DEn

| n ∈ N} is an increasing chain whose limit is precisely DE ,
hence DE must not be compact.

Lemma 7.22. Let E be an adversary of A. Let KE denote the set of compact
elements below DE, i.e., KE := {DE′ | DE′ finite and DE′ ≤[ DE}. Then KE is
directed and DE =

∨
KE.

Proof. Again we make use of the prefix-preserving enumeration {βn}n∈N. Take
{En}n∈N as in the proof of Lemma 7.21. Given a finite subset F of KE , we can
find N ∈ N such that for all DE′ ∈ F and n ≥ N , DE′(βn) = 0. This is because
F is finite and each DE′ is finite. Then DEN

is an upperbound of F . Moreover,
DEN

is finite, hence in KE . This shows KE is directed.
Finally, by the definition of ≤[, we have for all n:

∨
KE(βn) = DEn

(βn) = DE(βn).

Theorem 7.23. Given an image finite probabilistic automaton A, the structure
〈TrDist(A), ≤[〉 is an algebraic CPO and the compact elements are precisely the
finite trace distributions.

8. BOUNDEDNESS AND CONVERGENCE

The main result we establish in this section is that TrDist(A, k, l) forms a closed

set in the metric space [0, 1]Act
<ω

, where dist(~u,~v) := supβ∈Act<ω |uβ − vβ |.
Let {Ei}i∈N be a sequence of adversaries for elements of TrDist(A, k, l) for some

k, l ∈ N. For convenience, we write Di for DEi
, the trace distribution generated

by Ei. Each Di can be viewed as a point in the metric space [0, 1]Act
<ω

. We say
that {Ei}i∈N is a trace convergent sequence of adversaries whenever {Di}i∈N is a

convergent sequence in the space [0, 1]Act
<ω

. That is, there exists D ∈ [0, 1]Act
<ω

such that

∀ε ∃N ∀i ≥ N dist(Di, D) ≤ ε.

Equivalently, we have

∀ε ∃N ∀i ≥ N ∀β ∈ Act<ω |Di(β) − D(β)| ≤ ε.

We claim that D is also a trace distribution (i.e., there is an adversary E such that
DE = D). In particular, let E be the adversary constructed from {Ei}i∈N by the
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procedure described in Section 6.3. We will show that DE is in fact the limit of
{Di}i∈N.

First we prove a modification of Lemma 7.4. We restrict our attention to adver-
saries from Adv(A,−, l) and strengthen the conclusion to the existence of a uniform
bound for all β ∈ Act≤k.

Lemma 8.1. Let k, l ∈ N and ε > 0 be given. There exists finite, non-empty
Pk,ε ⊆ Path≤k(A) such that for all E ∈ Adv(A,−, l) and for all β ∈ Act≤k,∑

π∈Tr -1(β)\Pk,ε
QE(π) ≤ ε.

Proof. We proceed by induction on k. For every ε, take P0,ε to be the singleton
{s0}. Now suppose the claim holds for k. Let ε > 0 be given and choose a finite,
nonempty set Pk, ε

2
as stated. Let m > 0 be its cardinality. Consider the set

S :=
⋃

|π|=k,π∈Pk, ε
2

{last(π)
a
→ µ | a ∈ Act l}.

Since A is image finite, S is a finite union of finite sets, hence also finite. If S is
empty, set Pk+1,ε to be Pk, ε

2
. Otherwise, let n > 0 be its cardinality. For each µ

occurring in S, choose a finite set Xµ ⊆ supp(µ) such that

∑

s∈supp(µ)\Xµ

µ(s) ≤
ε

2mn
.

Then set Pk+1,ε to be Pk, ε
2
∪{πaµs | (last(π)

a
→ µ) ∈ S and s ∈ Xµ}. We will prove

that Pk+1,ε satisfies the desired condition.

Let E ∈ Adv(A,−, l) and β ∈ Act≤k+1 be given. Notice that, if β contains a
symbol not in Act l, then QE(π) = 0 for all π ∈ Tr -1(β). Thus we may assume
that β ∈ (Act l)

≤k+1. Moreover, if β has length at most k, then Tr -1(β) \ Pk+1,ε =
Tr -1(β) \Pk, ε

2
. This is because every path π ∈ Pk+1,ε \Pk, ε

2
(if it exists) must have

length k + 1. Therefore, we have

∑

π∈Tr -1(β)\Pk+1,ε

QE(π) =
∑

π∈Tr -1(β)\Pk, ε
2

QE(π) ≤
ε

2
≤ ε.

Now we focus on the case in which β ∈ (Act l)
k+1. Suppose β is of the form β′a.

We partition Y := Tr -1(β) \ Pk+1,ε into two sets:

Y0 := {πaµs ∈ Y | π 6∈ Pk, ε
2
},

Y1 := {πaµs ∈ Y | π ∈ Pk, ε
2

and s 6∈ Xµ}.

Then by Lemma 7.2 and the induction hypothesis, we have

∑

π∈Y0

QE(π) ≤
∑

π∈Tr -1(β′)\Pk, ε
2

QE(π) ≤
ε

2
.
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On the other hand,

∑

π∈Y1

QE(π) =
∑

πaµs∈Y1

QE(π) · E(π)(a, µ) · µ(s)

≤
∑

πaµs∈Y1

µ(s)

≤
∑

π∈Pk, ε
2

∑

last(π)
a
→µ∈S

∑

s∈supp(µ)\Xµ

µ(s)

≤ m · n ·
∑

s∈supp(µ)\Xµ

µ(s)

≤ m · n ·
ε

2mn
=

ε

2
.

Therefore,

∑

π∈Tr -1(β)\Pk+1,ε

QE(π) =
∑

π∈Y0

QE(π) +
∑

π∈Y1

QE(π) ≤
ε

2
+

ε

2
= ε.

Lemma 8.2. Let A be an image finite probabilistic automaton and let k, l ∈ N be
given. Let {Ei}i∈N be a sequence of trace convergent adversaries from Adv(A, k, l)
and write Di for DEi

. Let E be constructed as in Section 6.3. Then DE is the

limit of {Di}i∈N in the space [0, 1]Act
<ω

. That is,

∀ε ∃N ∀i > N ∀β ∈ Act<ω |Di(β) − DE(β)| ≤ ε.

Proof. First note that, for all β 6∈ (Act l)
≤k and i ∈ N, we have Di(β) =

0 = DE(β). Hence we may focus on traces in (Act l)
≤k. Let ε > 0 be given.

Choose finite, non-empty Pk, ε
3

as in Lemma 8.1 and let m := |Pk, ε
3
|. Moreover,

by trace convergence of {Ei}i∈N, we may choose M0 such that for all i, j > M0,
dist(Di, Dj) < ε

3 .
Recall from Section 6.3 that we have an enumeration {πn}n∈N of Path<ω(A).

Let M := max{n | πn ∈ Pk, ε
3
} + 1. Then by Corollary 6.8, we have

∀π ∈ Pk, ε
3

lim
j→∞

QEM
j

(π) = QE(π).

For each π ∈ Pk, ε
3
, choose jπ such that

∀j > jπ |QEM
j

(π) − QE(π)| <
ε

3m
.

Let L be the least number such that L > max{jπ | π ∈ Pk, ε
3
} and index (EM

L ) > M0.

Take N := index (EM
L ). Write Y0 for Tr -1(β)∩Pk, ε

3
and Y1 for Tr -1(β)\Pk, ε

3
. Then
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for all i > N and β ∈ (Act l)
≤k,

|Di(β) − DE(β)|

≤ |Di(β) − DN (β)| + |DN (β) − DE(β)|

≤
ε

3
+ |

∑

π∈Tr -1(β)

QEM
L

(π) −
∑

π∈Tr -1(β)

QE(π)|

≤
ε

3
+ |

∑

π∈Y0

QEM
L

(π) −
∑

π∈Y0

QE(π) +
∑

π∈Y1

QEM
L

(π) −
∑

π∈Y1

QE(π)|

≤
ε

3
+

∑

π∈Y0

|QEM
L

(π) − QE(π)| + |
∑

π∈Y1

QEM
L

(π) −
∑

π∈Y1

QE(π)|

≤
ε

3
+ m ·

ε

3m
+

ε

3
= ε.

Corollary 8.3. For all k, l ∈ N, the set TrDist(A, k, l) is a closed subset of

[0, 1]Act
<ω

.

Next we prove the analogous result for induced probability distributions (as de-
fined in Section 5.1).

Lemma 8.4. Let {Pi}i∈N ⊆ {PD,k | D ∈ TrDist(A, k, l)} be a convergent se-
quence in Act<ω with limit point P . Then P is a discrete distribution on Act<ω.

Proof. Clearly, P [β] = 0 for all β 6∈ (Act l)
≤k. On the other hand, since

(Act l)
≤k is a finite set, we have

∑

β∈(Actl)≤k

P [β] =
∑

β∈(Actl)≤k

lim
i→∞

Pi[β] = lim
i→∞

∑

β∈(Actl)≤k

Pi[β] = 1.

Lemma 8.5. Let k, l ∈ N and {Pi}i∈N ⊆ {PD,k | D ∈ TrDist(A, k, l)} be given.
Suppose {Pi}i∈N is a convergent sequence in Act<ω with limit point P . For each
i, choose Di so that Pi = PDi,k. Then {Di}i∈N is also a convergent sequence in
Act<ω. Moreover, P = PD,k, where D is the limit of {Di}i∈N.

Proof. Recall from Lemma 5.2 that for each i ∈ N and β ∈ (Act l)
≤k, we have

Di(β) =
∑

βvβ′;β′∈(Actl)≤k

Pi[β
′].

Define D from P with the same formula. Notice that this is a finite sum, therefore
D is the limit of {Di}i∈N.

Corollary 8.6. For all k, l ∈ N, the set {PD,k | D ∈ TrDist(A, k, l)} is also a

closed subset of [0, 1]Act
<ω

.

Proof. By Corollary 8.3 and Lemma 8.5.
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9. THE CHARACTERIZATION THEOREM

Let us briefly recapitulate our development. Our goal is to show that the testing
preorder defined in Section 5.4 coincides with trace distribution inclusion, as defined
in Section 4.2. In Section 7.6, we established that the set of trace distributions of
an image finite automaton forms an algebraic CPO. Therefore the following are
equivalent for image finite automata A and B:

—A vTD B;

—for all k, l ∈ N, A vk,l
TD B.

By virtue of this observation, it suffices to prove the following finitary characteri-
zation theorem.

Theorem 9.1. Let A and B be image finite probabilistic automata. Let α ∈
(0, 1) and k, l ∈ N be given. We have TrDist(A, k, l) ⊆ TrDist(B, k, l) if and only
if, for all m, Obs(A, k, l,m, α) ⊆ Obs(B, k, l,m, α).

Since Obs(A, k, l,m, α) is entirely defined in terms of TrDist(A, k, l) and param-
eters k, l, m and α, the “only if” direction of Theorem 9.1 is trivial. For the
converse, we assume there is D ∈ TrDist(A, k, l) \TrDist(B, k, l) and our goal is to
find m ∈ N and a sample O ∈ Obs(A, k, l,m, α) \ Obs(B, k, l,m, α).

Intuitively, we obtain such O by running the trace distribution machine repeat-
edly under D. For each m ∈ N, let Dm denote the length-m sequence in which
every element is D. Recall from Section 5.4 that an outcome is acceptable if its
frequency vector deviates minimally from the expected frequency vector. Our claim
is, as the number of trials increases, the amount of deviation allowed decreases to 0.
In other words, given any small δ > 0, we can find m ∈ N such that any acceptable
outcome of a width-m experiment must have a frequency vector within distance δ of
the expectation. This claim, together with the fact that we can always separate the
point PDm,k from the set {P ~K,k | ~K ∈ TrDist(B, k, l)} (Corollary 8.6), allows us to
distinguish acceptable outcomes of Dm from those generated by trace distributions
in TrDist(B, k, l).

Before presenting the formal proofs, let us further motivate our approach by
considering again the coin-flipping example. Suppose A is the fair coin and we
conduct 100 experiments on A. In this case, every outcome is just as likely as every
other outcome. Yet a frequency vector close to 〈0.5, 0.5〉 (for example 〈0.49, 0.51〉)
is much more likely to be observed than a frequency vector far away from 〈0.5, 0.5〉
(for example 〈0.01, 0.99〉). This is because there are many more outcomes with
frequency 〈0.49, 0.51〉 than there are outcomes with 〈0.01, 0.99〉. As we increase
the number of trials, this clustering effect intensifies and the probability of observing
a frequency vector with large deviation becomes very small.

This simple idea also applies in the case of m independent coin flips, where each
coin may have a different bias. This is formalized in the following lemma, which is
an analog of the weak law of large numbers for independent Bernoulli variables.

Lemma 9.2. Let α ∈ (0, 1) and δ > 0 be given. There exists M ∈ N such that
for all m ≥ M and sequences X1, . . . , Xm of independent Bernoulli variables,

P[|Z − EZ| ≥ δ] ≤ α,
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where Z = 1
m

∑m
i=1 Xi represents the success frequency in these m trials.

Proof. Take M ≥ 1
4δ2α

and let m,X1, . . . , Xm be given as stated. Assume that
each Bernoulli variable Xi has parameter pi ∈ [0, 1]. First note that for all p ∈ [0, 1],
p(1 − p) ≤ 1

4 . Then

Var[Z] = Var[
1

m

m∑

i=1

Xi] =
1

m2

m∑

i=1

Var[Xi]

=
1

m2

m∑

i=1

pi(1 − pi) ≤
1

m2

m∑

i=1

1

4
=

1

4m
.

By Chebychev’s inequality (Theorem 3.8), we have

P[|Z − E[Z]| ≥ δ] ≤
1

δ2
Var[Z] ≤

1

δ2
·

1

4m
≤

1

δ2
·

1

4M
≤

4δ2α

4δ2
= α.

In our case, successes correspond to occurrences of a particular trace β: if the
machine operates according to trace distributions ~D, then each run i corresponds
to a Bernoulli variable with parameter PDi,k[β] (see Section 5.2). Thus Lemma 9.2
gives the following corollary.

Corollary 9.3. Given any δ > 0, there exists M ∈ N such that for all m ≥ M ,
β ∈ Act≤k and sequences ~D of trace distributions in TrDist(A),

P ~D,k[{O ∈ U | |freq(O)(β) − E
~D,k
β | ≥ δ}] ≤ α.

Now we consider all sequences β ∈ (Act l)
≤k at the same time. This is where

we must restrict to sequences over Act l (rather than Act), since otherwise we are
concerned with infinitely many β’s.

Lemma 9.4. Given any δ > 0, there exists M ∈ N such that for all m ≥ M and
sequences ~D of trace distributions in TrDist(A, k, l),

P ~D,k[freq -1(Bδ(E
~D,k))] ≥ 1 − α.

Proof. Let n be the cardinality of (Act l)
≤k. By Corollary 9.3, we may choose

M such that for all m ≥ M , β ∈ Act≤k and sequences ~D of trace distributions in
TrDist(A),

P ~D,k[{O ∈ U | |freq(O)(β) − E
~D,k
β | ≥ δ}] ≤

α

n
.
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Then for all m ≥ M and sequences ~D, we have

P ~D,k[freq -1(Bδ(E
~D,k))]

= P ~D,k[{O ∈ U | ∀β |freq(O)(β) − E
~D,k
β | < δ}] definition of dist

= 1 − P ~D,k[{O ∈ U | ∃β |freq(O)(β) − E
~D,k
β | ≥ δ}]

≥ 1 −
∑

β∈(Actl)≤k

P ~D,k[{O ∈ U | |freq(O)(β) − E
~D,k
β | ≥ δ}]

≥ 1 − n
α

n
= 1 − α choice of M

We are now ready for the proof of Theorem 9.1.

Proof Theorem 9.1. The “only if” direction is trivial. For the converse, as-
sume there is D ∈ TrDist(A, k, l) \ TrDist(A, k, l). Let δ denote the distance

between the point PDm,k and the set { 1
m

∑m−1
0 P ~K,k | ~K ∈ TrDist(B, k, l)}. By

Corollaries 6.6 and 8.6, δ must be non-zero.
By Lemma 9.4, we can find MA and MB such that for all m ≥ max(MA,MB)

and all sequences of trace distributions ~K in TrDist(B, k, l),

PDm,k[freq -1(B δ
3
(EDm,k))] ≥ 1 −

α

2
> 1 − α

P ~K,k[freq -1(B δ
3
(E

~K,k))]) ≥ 1 −
α

2
> 1 − α.

Therefore, we have

Obs(Dm, k, α) ⊆ freq -1(B δ
3
(EDm,k)) = freq -1(B δ

3
PDm,k)

and, for all sequences ~K in TrDist(B, k, l),

Obs( ~K, k, α) ⊆ freq -1(B δ
3
(E

~K,k)) = freq -1(B δ
3
(
m−1∑

0

1

m
P ~K,k)).

Since dist(PDm,k,
∑m−1

0
1
m

P ~K,k) ≥ δ, we have B δ
3
PDm,k∩B δ

3
(
∑m−1

0
1
m

P ~K,k) = ∅.

Therefore Obs(Dm, k, α) 6⊆ Obs(B, k, l, α).

Theorem 9.5. Let A and B be image finite probabilistic automata and let α ∈
(0, 1) be given. We have A vTD B if and only if A ≤α B.

Proof. We have the following chain of equivalences:

A vTD B

⇔ A vk,l
TD B for all k, l ∈ N Theorem 7.23

⇔ Obs(A, k, l,m, α) ⊆ Obs(B, k, l,m, α) for all k, l,m ∈ N Theorem 9.1

⇔ A ≤α B definition of ≤α
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10. CONCLUDING DISCUSSIONS

The theory of stochastic processes finds many applications in the area of perfor-
mance analysis of computer systems. In such applications, randomness is typically
used to model uncertainties in the computation environment; for example, the ar-
rival rate of jobs and processing time required for each job. We are then interested in
calculating or estimating parameters such as expected waiting time and percentage
of missed deadlines over a given period.

The model considered in this paper is developed in a different tradition, namely,
the analysis of distributed algorithms. Here randomness is used by the processes
themselves to achieve certain goals. For instance, processes cast randomly gener-
ated votes to reach consensus, or they choose a neighbor at random to propagate
information. In this setting, the computation environment is extremely unpre-
dictable and it does not always makes sense to assume a fixed pattern of events
(e.g. exponential distribution on message delay). Nondeterminism is therefore a
more reasonable alternative for modeling timing uncertainties. Moreover, nonde-
terministic choices are extremely useful in specification and verification, allowing
us to abstract away from inessential temporal ordering of events.

This paper presents a first step in developing statistical testing techniques for
systems with nondeterministic behavior. We show that, under some appropriate
finiteness assumptions, nondeterministic choices are “harmless”. The rationale be-
hind this statement is that we can view a nondeterministic choice among events as
a weighted sum of those events, but with unknown weights. Therefore the behavior
of a process is represented by a convex closed set of distributions, rather than a
single distribution. This retains many of the nice properties of purely probabilis-
tic processes and we are able to use hypothesis tests to characterize an existing
semantic equivalence.

We see much potential in applying our ideas to “black-box” verification, where
we have little or no control over the system of interest. Given such a system, one
can construct a probabilistic automaton as the test hypothesis and use samples
generated from the actual system to either accept or reject the hypothesis. This
method provides rigorous guarantees regarding error probabilities.

We define very simple hypothesis tests in this paper, because we do not have
a special problem in mind and thus cannot make use of any domain knowledge.
In practice, one can design more powerful tests (i.e., those that also control false
positive errors) using specific properties of the distributions involved. Also, it may
be sufficient to consider simple or one-sided hypotheses, for which standard meth-
ods exist for finding uniformly most powerful tests. (In contrast, our tests have
composite and two-sided alternative hypotheses.)
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Gregorio-Rodŕıgez, C. and Núñez, M. 1998. Denotational semantics for probabilistic refusal
testing. In Proceedings ProbMIV 98. Electronic Notes in Theoretical Computer Science, vol. 22.

Jonsson, B. and Yi, W. 2002. Testing preorders for probabilistic processes can be characterized
by simulations. Theoretical Computer Science 282, 1, 33–51.

Kolmogorov, A. and Fomin, S. 1970. Introductory Real Analysis. Dover Publications, Inc.,

New York.

Larsen, K. and Skou, A. 1991. Bisimulation through probabilistic testing. Information and

Computation 91, 1–28.

Lynch, N., Saias, I., and Segala, R. 1994. Proving time bounds for randomized distributed

algorithms. In Proceedings of the 13th Annual ACM Symposium on the Principles of Distributed

Computing. 314–323.

Milner, R. 1980. A Calculus of Communicating Systems. Lecture Notes in Computer Science,
vol. 92. Springer-Verlag.

Nicola, R. and Hennessy, M. 1984. Testing equivalences for processes. Theoretical Computer

Science 34, 83–133.

Pogosyants, A., Segala, R., and Lynch, N. 2000. Verification of the randomized consensus

algorithm of Aspnes and Herlihy: a case study. Distributed Computing 13, 3, 155–186.

Rudin, W. 1987. Real and Complex Analysis. McGraw-Hill, Inc., Boston.

Segala, R. 1995. Modeling and verification of randomized distributed real-time systems. Ph.D.

thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of

Technology. Available as Technical Report MIT/LCS/TR-676.

Segala, R. 1996. Testing probabilistic automata. In Proceedings CONCUR 96. Lecture Notes

in Computer Science, vol. 1119. Springer-Verlag, 299–314.

Segala, R. and Lynch, N. 1995. Probabilistic simulations for probabilistic processes. Nordic

Journal of Computing 2, 2, 250–273.

Sen, K., Viswanathan, M., and Agha, G. 2004. Statistical model checking of black-box proba-
bilistic systems. In Computer-Aided Verification. LNCS, vol. 3114. Springer-Verlag, 202–215.

Stoelinga, M. 2002. An introduction to probabilistic automata. Bulletin of the European

Association for Theoretical Computer Science 78, 176–198.

Journal of the ACM, Vol. V, No. N, November 2007.



46 · Ling Cheung et al.

Stoelinga, M. and Vaandrager, F. 1999. Root contention in IEEE 1394. In Proceedings 5th

International AMAST Workshop on Formal Methods for Real-Time and Probabilistic Systems,

J.-P. Katoen, Ed. Lecture Notes in Computer Science, vol. 1601. Springer-Verlag, 53–74.

Stoelinga, M. and Vaandrager, F. 2003. A testing scenario for probabilistic automata. In

Proceedings 30 ICALP. Lecture Notes in Computer Science, vol. 2719. Springer-Verlag, 407–

418.

Trivedi, K. 2002. Probability and Statistics with Reliability, Queuing and Computer Science

Applications. John Wiley & Sons, Inc., New York.

Vatan, F. 2001. Distribution functions of probabilistic automata. In Proceedings STOC 01.

684–693.

Younes, H. 2005. Probabilistic verification for ”black-box” systems. In Proceedings CAV 2005.

253–265.

Younes, H., Kwiatkowska, M., Norman, G., and Parker, D. 2004. Numerical vs. statistical

probabilistic model checking: an empirical study. In Tools and Algorithms for the Construction

and Analysis of Systems. Lecutre Notes in Computer Science, vol. 2988. Springer-Verlag, 46–60.

Younes, H. and Simmons, R. 2002. Probabilistic verification of discrete event systems using

acceptance sampling. In Computer-Aided Verification. Lecture Notes in Computer Science,

vol. 2404. Springer-Verlag, 223–235.

Received Month year; revised Month Year; accepted Month Year

Journal of the ACM, Vol. V, No. N, November 2007.


