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Abstract. We extend the basic system relations of trace inclusion, trace equiva-
lence, simulation, and bisimulation to a quantitative setting in which propositions
are interpreted not as boolean values, but as real values in the irff@efjalrace
inclusion and equivalence give rise to asymmetrical and symmelinear dis-
tanceswhile simulation and bisimulation give rise to asymmetrical and symmet-
rical branching distanced/Ne study the relationships among these distances, and
we provide a full logical characterization of the distances in terms of quantitative
versions of ITL andu-calculus. We show that, while trace inclusion (resp. equiv-
alence) coincides with simulation (resp. bisimulation) for deterministic boolean
transition systems, linear and branching distances do not coincide for determinis-
tic quantitative transition systems. Finally, we provide algorithms for computing
the distances, together with matching lower and upper complexity bounds.

1 Introduction

Quantitative transition systems extend the usual transition systems, by interpreting propo-
sitions as numbers in [0,1], rather than as truth values. Quantitative transition systems
arise in a wide range of contexts. They provide models for optimization problems,
where the propositions can be interpreted as rewards, costs, or as the use of resources
such as power and memory. They also provide models for discrete-time samplings of
continuous systems, where the propositions represent the values of continuous vari-
ables at discrete instants of time. We extend the classical relations of trace inclusion,
trace equivalence, simulation, and bisimulation to a quantitative setting, by defining
linear and branchindistances$. Considering distances, rather than relations, is partic-
ularly useful in the quantitative setting, as it leads to a theory of system approximations
[5, 16, 1], enabling the quantification of how closely a concrete system implements a
specification.

We define two families of distancebnear distanceswhich generalize trace in-
clusion and equivalence, abdanching distancesyhich generalize (bi)simulation. We
relate these distances to the quantitative version of the two well-known specification
languages tL andpu-calculus, showing that the distances measure to what extent the
logic can tell one system from the other.

Our starting point for linear distances is the distafice- p||. between two traces
o and p, which measures the supremum of the difference in predicate valuations at
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1n this paper, we use the term “distance” in a generic way, applying it to quantities that are
traditionally called pseudo-metrics and quasi-pseudo-metrics [7].



corresponding positions @f andp. To lift this trace distance to a distance over states,

we definddS(s;t) = SUP; c1r(s) Ny ety llo — plle, whereTr(s) andTr(t) are the set of

traces frons andt, respectively. The distandg®(s,t) is asymmetrical, and is a quanti-
tative extension of trace containmentldf(s,t) = b, then for all tracess from s, there
is a tracep fromt such that|o — p||» < b. In particular,Tr(s) C Tr(t) iff 1dS(s,t) = 0.
We define a symmetrical version of this distancdd(s t) = max{ldS(s,t),ld(t,s)},
yielding a distance that generalizes trace equivalence; tiés, t) is the Hausdorff
distance betweefr(s) andTr(t).

We relate the linear distance to the logic1@, a quantitative version ofiL [12].

When interpreted on a quantitative transition systemmi.(formulas yield a real value

in the interval [0,1]. The formula “nexp” returns the (quantitative) value g@f in the

next step of a trace, while “eventually’ seeks the maximum value attained lpy
throughout the trace. The logical connectives “and” and “or” are interpreted as “min”
and “max”, and “notx” is interpreted as * x. Furthermore, @rL has a bounded dif-
ference operator- , defined ax — y = max{x—y,0}.

In the boolean setting, for a relation to characterize a logic, two states must be re-
lated if and only if all formulas from the logic have the same truth value on them. In the
guantitative framework, we can achieve a finer characterization: in addition to relating
those states that formulas cannot distinguish, we canmaéssurego what extent the
logic can tell one state from the other. We show that the linear distances provide such
a measure for QrL: for all statess,t we haveldS(s;t) = SUR,cqur |9(S) — @(t)[ and
Id3(s,t) = SUR,cqur (9(S) = @(t)). We investigate what syntactic fragment of1Q
is necessary for such a characterization, showing in particular that the fragment must
include the operator- , in line with the results of [5, 11]. We also consider linear dis-
tances based on the asymmetric trace distnce p||. for tracess andp. Intuitively,
if ||o - plle = b, then all predicate valuations alopgare no more thab below the
corresponding valuations im. Such asymmetrical distances are useful in optimization
and control problems, where it is desired to approximate a given quantity from above
or below. We show that these distances are characterized kpo#itvefragment of
QLTL, in which all propositions occur with positive polarity.

We then study the branching distances that are the analogous of simulation and
bisimulation on quantitative systems. A staeimulates a state via R if the pro-
position valuations as andt coincide, and if every successor fs related viaR
to some successor of We generalize simulation to a distanbe over states. If
bd*S(s,t) = b, then||s—t||» < b, and every successor efcan be matched by a suc-
cessor ot within bd*S-distanceb. In a similar fashion, we can define a distamc®
that is a quantitative analogous of bisimulation; such a distance has been studied in
[5,16]. We relate these distances tom@Q, a quantitative fixpoint calculus that es-
sentially coincides with thei—calculus of [2], and is related to the calculi of [9, 3]
(see also [8,13]). In particular, we show that>S(s;t) = SUR,cqmu |9(s) — @(t)| and
bd*S(st) = sup¢€3QMU((p(s) = (1)), where3Qmu is the fragment of @u in which
only existential predecessor operators occur. Similarly, starting from the asymmetrical
state distancés— t||., we obtain branching distances that are characterized by the cor-
responding positive fragments ofM@. As before, these characterizations require the
presence of the- operator in the calculus.



We relate linear and branching distances, showing that just as simulation implies
trace containment, so the branching distances are greater than or equal to the corre-
sponding linear distances. However, while trace inclusion (resp. equivalence) coincides
with simulation (resp. bisimulation) for deterministic boolean transition systems, we
show that linear and branching distances do not coincide for deterministic quantitative
transition systems. Finally, we present algorithms for computing linear and branching
distances over quantitative transition systems. We show that the problem of comput-
ing the linear distances is PSPACE-complete, and it remains PSPACE-complete even
over deterministic systems, showing once more that determinism plays a lesser role in
quantitative transition systems. The branching distances can be computed in polynomial
time using standard fixpoint algorithms [2].

We also present our results indéscountedversion, in which distances occurring
i steps in the future are multiplied by, wherea is a discount factor if0, 1]. This
discounted setting is common in the theory of games (see e.g. [6]) and optimal control
(see e.g. [4]), and it leads to robust theories of quantitative systems [2].

2 Preliminaries

For two numbers,y € [0,1], we writex Ly = max(X,y), XMy = min(X,y), Xx+y=11
(x+y) andx~ y=0U (x—Yy). We lift the operators) andr1, and the relations:, < to
functions via their pointwise extensions. Given a functiarX? — IR=°, we denote by
Zero(d) = {(x,y) € X?| d(x,y) = 0} its zero set.

Quantitative transition systems. A quantitative transition syste(@TS).” = (S 1, X,

[-]) consists of a se$ of states, a transition relationC Sx S, a finite setZ of propo-
sitions, and a functioft]: S— (X — [0,1]) which assigns to each state Sand pro-
positionr € X a value[g|(r). For a states € S, we write 7(s) for {t € S| (s;t) € 7}.

We require that¥ is finite-branching and non-blocking: for ale S the setz(s) is
finite and non-empty. We call a functian £ — [0, 1] a Z-valuation,and we denote by

% the set of allX-valuations. A QTSY is booleanif for all s€ Sand allr € X, we
have[s|(r) € {0,1}. A QTS.7 is deterministidf for all statess € Sandt,t’ € 7(s) with

t #t/, there isr € X such thaft](r) # [t'](r). When discussing algorithmic complexity,
we assume that valuese [0,1] are encoded as fixed-point binary numbers, and we
denote byx|,, the number of bits their encoding. We define the size of a (finite) QTS

S =L by [ = FsesTrer |[8(N]p + s TS|

Paths and traces. Given a sefA and a sequence = a,a,a,--- € A®, we write ; for
thei-th elementy, of &, and we writer' = a.a,,a_,--- for the (infinite) suffix ofz
starting fromz;. A pathof . is an infinite sequence = sys;S, - - of states such that
(S,5,1) € Tforalli € IN. Given a states € S, we write Ptg(s) for the set of all paths
starting ins. A X-traceis an infinite sequence = uyu,u, - -- € % “; we call aX-trace
simply a trace wheLX is clear from the context. Every pathof .# induces a--trace
(7] = [mp) (7] [7y] - - - ; we write Tr(s) = {[x] | = € Ptg(s)} for the set of traces frome S.
We define simulation, bisimulation, and trace containment for QTS as usual. Specif-

ically, fora QTS.” = (S, 7, X, [-]), the simulation relatior<;,, (resp. the bisimulation
relation~, ;) is the largest relatioR C Sx Ssuch that, for albRt, the following con-
ditions (i) and (ii) (resp. (i), (i), and (iii)) hold: (ijs| = [t]; (ii) for all §' € 1(s), there



ist’ € 7(t) with §RY'; (iii) for all t’ € 7(t), there iss’ € 7(s) with SRt'. Fors;t € S we
write sCy, t if Tr(s) C Tr(t), ands =, t if Tr(s) = Tr(t).

Directed metrics and pseudometrics.A directed metricon X is a functiond : X x
X — IR=? that satisfiesl(x,x) = 0 for all x € X and the triangle inequalityd(x,z) <
d(x,y) +d(y,z) for all x,y,z < X. A pseudometric ds a directed metric that is sym-
metric, i.e.d(x,y) = d(y,x) for all x,y € X. Given a directed metric, we denote thyts
symmetrizationdefined byd(s,t) = d(s,t) L/ d(t,s).

We develop our definitions in terms of directed metrics. Given a directed metric
d on X and a mappingj: X — [0,1], the “directed” boundi(x,y) > q(x) ~ q(y) for
all x;y € X immediately yields the “symmetrical” bourdi(x,y) > |q(x) — q(y)| for
all x,y € X. Hence, we focus on directed metrics and directed bounds, deriving the
symmetrical results through the above observation.

3 Linear Distances and Logics

Throughout this paper, unless specifically noted, we consider a fixed a.@ES
(S t,X,[]). The propositional distance between two states measures the maximum dif-
ference in their proposition evaluations.

Definition 1 (propositional distance) We define thgropositional distance pd% 2 —
[0,1], for allu,v € %, aspd(u,v) = max 5 (u(r) = v(r)). &

For ease of notation, we will writed(s,t) for pd([g], [t]). Foru,v e % we have(u,v) €
Zerq(pd) iff u(r) =v(r) forall r € £, and(u,v) € Zera(pd) iff u(r) <v(r)forallr € X.
The definition of trace distance discounts the propositional distance at positibite
trace by multiplying it bya!', for o € [0,1].

Definition 2 (trace distance) We define therace distance td : 7 — [0,1] by let-
ting, foro,p € 7® anda € [0,1], tdy (o, p) = sug. @'pd(c;,p;). N

For o = 1, the definitions reduce to the classical notions of trace distamider, p) =

|6 = p|lw, andtd, (o, p) =||o — p|l». We note thatd,, is a generalization of the Cantor
metric, which equalia_d1 ,- Intuitively, td (resp.td) 2 corresponds to implication (resp.
equivalence) along all the trace. Indeed, liftixigand= to traces in a pointwise way, for
allo,p € Z® anda € (0,1] we have thato,p) € Zerotd,) iff o = p, and(o,p) €
Zero(tdy) iff o < p. The linear distances are obtained by lifting trace distances to the
set of all outgoing traces in two states, as in the Hausdorff distance.

Definition 3 (linear distance) We define the twdinear distances I8 andld® over S
as follows, fors;t € Sanda € [0,1]:

ld3(sit) = sup inf tdy(c,p) ldS(st)= sup inf tdy(c,p) N
ocTr(s) PETH(Y) oeTr(s) PETI(H)

One can easily check that, for all € [0,1], the functionsld?, Id3, are directed
metrics andd?, Id$, are pseudometrics. Intuitively, the distaridé is a quantitative

2 When discussing properties that are independent of the discount factor, we sometimes omit the
o subscript from distance names.
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Fig. 1. A QTS showing the difference betwekdt},, IdS, [d3, andlds,.

extension of trace containment: fat € S, the distancéd®(s,t) measures how closely
(in a quantitative sense) can a trace froaimulate a trace frora The symmetrization

of 1dS is IdS, which is related to trace equivalence. The following result makes this
observation precise.

Theorem 1 Forall a € (0,1], we have—,, = Zerq(ld$,)) and=, = Zero(Id$)).

We will see that the valuation of QL formulas asandt can differ by at mostdS(s;t),
and similarly, the valuation of any QL formula att is at mostldS(s,t) below the
valuation ats. For a = 1, the distancekl® andId® have the following intuitive char-
acterization. For a trace € ® andc € IR, denote byo - ¢ the trace defined by
(0= c),(r)=0,(r) = cforallke Nandr € X: in other wordso — cis obtained from
o by decreasing all proposition valuations dyFor alls,t € S, if Id3(s,t) = c then for
every traceoc from s there is a tracep fromt such thatp > o =~ c¢. This means that
Id3(s,t) is a “positive” version of trace containment: for each tracef s, the goal of a
tracep fromt is not that of being close to, but rather, that of not being below - c.
This version of trace containment will preserve witkithe valuation of QTL formu-
las with only positive occurrences of propositions (called positiveLJormulas). The
relations among linear distances are summarized by the following theorem.

Theorem 2 The relations in Figure 4(a) hold for alk € [0, 1]. Moreover, fora € (0, 1]
the inequalities cannot be replaced by equalities.

Proof. The inequalities are immediate. Ferc (0, 1] and the QTS in Figure 1, we have

ld5(sp,tp) =0 ld5(to, up) =0 ld5 (Ug,ty) =0
ld5,(sp,tp) =0 Id5, (to, ) = @ Id?, (ug,ty) =0
1d%(sp,tp) = @ 1d%,(ty, Up) =0 1d% (ug,ty) =0
1d5,(sp:tp) = @ 1d5, (tg, Up) = @ 1d3,(Ug.ty) = @

Thus, we have an example whddd, # IdS, 1d2 # Id3, Id$, # IdS, 1d3 # Id$,, and
neitherld$, <1d2 norld}, >1d3. &

3.1 Quantitative Linear-Time Temporal Logic

The linear distances introduced above are closely connected to a quantitative exten-
sion of linear-time temporal logic which we calliantitative linear-time temporal logic
(QLTL). The logic QTL includes quantitative versions of the temporal operators and
logic connectives. Following [5], L also has a “threshold” operator, enabling the
comparison of a formula against a constant in the intej@dl]. The Q.TL formulas

overX are generated by the following grammar:

o i=r1|oNploVvo|-plcto|c=@| q0|~ap|Ca@|Tap



Herer € X is a propositiong € [0,1] a constant andx € [0,1] a discount factor. A
formula @ assigns a valufe](p) € [0, 1] to each traces C % .

[rl(o) = 0p(r)

[~el(o) = 1-[¢l(o) [p1 A @] (o) = [ ](0) N @] (o)

[c+ oll(o) = c+[o](o) [@1V@,](0) = [](c) L [[@,] (o)

[c= ¢](c) = c= [el(o) [©a@](6) = sup{ci-[@](c')|i>0}

[ «0l(o) = a-[[(ﬂ]](crl) [Oe](c) = inf{l—a'-(1—[e](c"))|i>0}
[~a9l(o) = 1-a+a-[¢](c)

A QuTL formula ¢ assings a real valuge])(s) € [0,1] to each states of a given
an QTS, according to the rdd[o]|(s) = sup{[¢](p) | p € Tr(s)}. Thanks to the
equivalences: 4@ = ~4—0,=(c+ @)= ((1—¢c) = ¢),~(c=¢)=((1—c) + @),
-(Cq@) = Og—e, and the classical dualities betweenv, u, andv, the syntax of
QLTL allows negations to be pushed to the atomic propositions without affecting the
value of a formula. For € [0,1], we denote by @QrL, the set of formulas containing
only discount factors smaller than or equabtoAll QLTL operators ar@ositive,with
the exception of- andc ~ for c € [0, 1], which arenegative We say that a @QrL for-
mula ispositiveif all propositions occur with positive polarity, that is, within an even
number of negative operators; we denote byrQQ, the positive fragment of QL.
Furthermore, foopsC { ,~,¢,O,+, = }, we denote by QrL 4 (ops the set of for-
mulas which only contain boolean connectives and operatocpinWe denote by
QLTL (op9 the restrictions of these sets to positive formulas. Notice thatxfer 1,

« and ~, coincide with the usual  operator of LTL. Thus, if we forbid the use of
+ and — and we take all discount factors to be 1, the semantics.afi @n boolean
systems coincides with the one of L

3.2 Logical Characterization of Linear Distances

Linear distances provide a bound for the difference in valuationiaf.ormulas. We
begin by relating distances and logics over traces.

Lemmal Forall o €[0,1] and all traceso,p € % “, the following holds.

Forallp € QUL tdy(0,p) = [9](0) = [[q)]](p):
Forall g € QLTLy:  tdg(o,p) > |[e

The following theorem uses the linear distances to provide the desired boundsfar Q

Theorem 3 Forall a € [0,1] and st € S, we have:

Forall ¢ € QuTL, :1d5(st) > [@](s) = [¢](t) and Id5(s,t) > |[¢](s) — [¢] V)],
Forall ¢ € QLTL, :Id3,(st) > dId3, > |

3 We chose to give the existential interpretation affQ. Obviously, the minimum value ap
from sis obtained by one minus the maximum value-@f in s.
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Fig. 2. QLTL cannot distinguish betweerandt.

The results fotd® andld® are the quantitative analogous of the standard connection be-
tween trace containment and trace equivalence, amd Eor instance, the result about
Id® states that, ifd$, (s,t) = c, then for every @QTL formulag and every trace froms,
there is a trace fromt such thaf[e](p) > [[¢](c) —c.

The following theorem states that the linear distances can be characterized by a
syntactic subset of the logics that includes only the  &noperators, in addition to
boolean connectives. Together with Theorem 3, this result constitutes a full characteri-

zation of linear distances in terms of. Q..
Theorem4 Forall a € [0,1] and st € S,

ldi(st)= sup  [ol(s)=[e](t) Tdi(st)y=  sup [[o](s)—[e](t)]
peQLTLL () peQLTLL ()

ld3(st)= sup  [ol(9~[e](t) Ido(st)= sup |[[e](s)—[e](t)|
PeQLTLy( ,+) PEQLTLy( ,+)

The next result shows that the operaiois indeed necessary to obtain such a charac-
terization ( is also trivially necessary). This result is reminiscent of a result by [5] for
Markov systems.

Theorem 5 There is a finite QTS and two states s and t such that, foscal (0, 1],
Id3(s.t) =1d5,(5.t) > 0, andsup, o r, - o0 98~ [@](®)] =O.

As an example, consider the QTS in Figure 2, and assumé. It holds thatdS (s;t) =
Id3,(s,t) = 0.2. A suitable formula for distinguishirgandtis @ :  [(0.6 4+ —r)A (0.4 +

r)]; we havep(s) = 1 andg(t) = 0.8. On the other hand, it can be proved by induction
on the structure of the formula that#fand — are not used, there is noL@Q. formula
that distinguishes betwearandt.

3.3 Computing the Linear Distance

Given a finite QTSY = (S, 7, X, []) we wish to computédy, (s,,t,), for all s,t; € S

all x € {a,;s}, and alla € (0,1] (the casex = 0 is trivial). We describe the compu-
tation of Id®, as the computation dfi is analogous. We can read the definition of
Id® as a two-player game. Player 1 chooses a paths,s;S,--- from s,; Player 2
chooses a path’ = tyt;t,--- fromt,; the goal of Player 1 (resp. Player 2) is to max-
imize (resp. minimize) SLkpkad(Ek,ﬂ{(). The game is played with partial informa-
tion: afters,---s,, Player 1 must choosg, ; without knowledgé of t,---t,. Such

4 Indeed, if the game were played with total information, we would obtain the branching dis-
tances of the next section.



a game can be solved via a variation of subset construction [14]. The key idea is to
associate with each final stegg of a finite pathss, - --s, chosen by Player 1, all fi-
nal stated, of finite pathstt, - --t, chosen by Player 2, each labeled by the distance
V(s Snitg - tn) = mayy, @ "pd(s ).

From.#, we construct another QT.8" = (S, 7’,{r},[-]'), having set of stateS =
Sx 25D |f a =1 we can také = {pd(s,t) | s,t € S}, so thaiD| < |§2. Fora € (0,1],
we takeD = {pd(s,t)/ak | st € SAk e NApd(st) < a} U {1}, so that|D| < [S?-
[log, min{pd(s;t) | s,t € SApd(s,t) > 0}] + 1. The transition relation’ consists of all
pairs((s,C),(s,C’)) such thas' € 7(s) andC' = {(t',V) | 3(t,v) eC.t' e T(t) AV =
(v/a U pd(s,t’)) M 1}. Note that only Player 1 has a choice of moves in this game,
since the moves of Player 2 are accounted for by the subset construction. Finally, the
interpretation[-) is given by[(s,C)]'(r) = min{v | (t,v) € C}, so thatr indicates the
minimum distance achievable by Player 2 while trying to match a pat @) chosen
by Player 1. The goal of the game, for Player 1, consists in reaching a statewith
the highest possible (discounted) valueroThus, for alls;t € S, we haveld,(s,t) =
[FCar] 4 ((s {(t,pd(s 1)) })), where the right-hand side is to be computeds6h This
expression can be evaluated by a depth-first traversal of the state spateradting
that no state of”” needs to be visited twice, as subsequent visits do not increase the
value of o, r.

Theorem 6 For all x € {a s}, the following assertions hold:
1. Computing I§ for o € [0,1] and QTS is PSPACE-complete io”’| + |ct|,,.
2. Computing I for a € [0,1] and deterministic QTS” is PSPACE-complete in
7|+ |y
3. Computing I, for « € [0,1] and boolean, deterministic QTS is in time Q|.7|*).

The upper complexity bound for part 1 comes from the above algorithm; the lower
bound comes from a reduction from the corresponding result for trace inclusion [15].
Part 2 states that, unlike in the boolean case, the problem remains PSPACE-complete
even for deterministic QTSs. This result is proved by a reduction to the nondeterministic
case: by introducing perturbations in the valuations, we can tranform a nondeterminis-
tic QTS into a deterministic one; for appropriately small perturbations, the distances
computed on the derived deterministic QTS enable the determination of the distances
over the nondeterministic QTS. Finally, part 3 is a consequence of Theorems 13 and 12.

4 Branching Distances and Logics

Definition 4 (branching distances) Consider the following four equations involving
the functiond : §* — [0, 1] and the parametex < [0, 1].

(Aa) d(s,t) = pd(s,t) LU - max min d(s,t")

der(s)t’er(t)
A d(s,;t) = pd(s,t) U a - in d(s,t’
(As) (st)=pd(st) Ua Jnax min (s,t)
S d(s,t) =pd(s,;t) L o - ind(s,tYua- in d(d,t’
(Sa (st)=pd(st) Lo Jnax min (s,t)Ua Jnax min (s,t)

Ss d(s,t) = pd(s,t) U - max min d(s,t") U o- max min d(g,t’
(S9 (st)=pdst)Ua der(s)ter(t) (s,t) e ter(t) Set(s) (s,t)



Forx € {Aa,As,Sa Ss}, we define the branching distanoe, as the smallest function
d: S — [0,1] satisfying the equatiofx). B

The distancebd®® is related to the metrics of [5, 16, 2]. Cleadyl®s = bd>S, so we
obtain three symmetrical versiobd?, bd*s, andbd2 For all« € [0, 1], the functions
b2, bdS, andbdS? are directed metrics, and the functidigs®, bd4?, bdAS, andbdS?
are pseudometrics.

Fora € (0,1], bdl® characterizes similarity anat3S characterizes bisimilarity.

Theorem 7 Forall a € (0,1], we have<,,= Zero(bd}®) and~, = Zera(bd3)).

—sIim
The distanc&d? corresponds to a variant of simulation wherdadf?(s,t) = 0 (that is,
if sis related ta), then[s| < [t]. This notion is the quantitative equivalent of a boolean
notion of simulation proposed in [10] for the preservatiorpositiveACTL formulas,
thatis, ACTL formulas where all propositions occur with positive polarity. Indeed, The-
orem 8 states that a similar characterization hold#? in the quantitative setting.
Just as similarity in both directions does not imply bisimulatiod}® can be strictly
smaller tharbd>, andbd”@ can be strictly smaller thaod>®

Theorem 8 The relations in Figure 4(b) hold for all QTS and for all € [0,1]. For
o € (0,1], no other inequalities hold on all QTSs.

4.1 Quantitative u-Calculus

We define quantitativer-calculus after [2]. Given a set of variabl¥sand a set of
atomic propositiong’, the formulas of thejuantitativeu-calculusare generated by the
grammar

¢ i=r[x|loAp|oVve|-p|cto|c o]
3 a0 |3I~a@ |V 4@ |V~a0 | ux.@|vX. ¢

for propositionsr € X, variablesx € X, and discount factore, € [0,1]. Denoting by
Z =(S—[0,1)), a (variable) interpretation is a functiefi: X — %#. Given an in-
terpretation&’, a variablex € X and a functionf € .%, we denote by¢'[x := f] the
interpretations” such that€” (x) = f and, for ally # x, &' (y) = £(y). Given a QTS and
an interpretatior®’, every formulap of the quantitativeu-calculus defines a valuation

[¢]s:S—[0.1):

[rle(s)  =I[sl(r)

X, = &(x) [F aplls(s) = MaXyc () ] +(s)

[[(pl/\ (Pz]]g _ [[(Plﬂg M [[(Pz]]g’ [BNoc‘P]](D(S) =1- O‘-"’_a ma)g’er(s) [[‘P]](D(s/)

[0 @l =il Lol 17 0o = & Mg [91(5)

ol =1-lols(e  Petle® 7 wre e lol
HX. @z =N = 1Plgp=t

ool oo logig ol ST lok )

The existence of the required fixpoints is guaranteed by the monotonicity and continuity
of all operators. lip is closed, we writg¢] for [¢] .. A formula ispositiveif all atomic



propositions occur in the scope of an even number of negations. FeralD, 1], we

call CLMuCaLc, the set of closegi—calculus formulas where all discount factors are
smaller than or equal ta and Q. MuCALc}, the subset of CMUCALC,, that only
contains positive formulas. We denote 8L MUCALC,, ICLMUCALC], the respec-
tive subsets with no occurrenceswfForopsC{ ,~,<¢,0,4, -~ ,u,v,3,V}, we de-
note by @ MuUCALC,(op9 the set of formulas that only contain boolean connectives
and operators ilmps Notice that, if we omit the operators and — and we take all
discount factors to be 1, then the semantics of the quantitatizalculus on boolean
systems coincides with the one of the classjcaalculus.

4.2 Logical Characterizations of Branching Distances

The following result shows that the branching distances provide bounds for the corre-
sponding fragments of the-calculus.

Theorem 9 For all QTSs, states s and t, amde [0, 1], we have

forall ¢ ¢ 3ICLMuUCALc,  bdi3(s,t) > [¢]/(s) = [@](t)
forall ¢ ¢ 3ICLMUCALC,  bdiS(st) > [@](s) = [[@] (1)
forall ¢ € CLMuCALc,  bd3¥st) > [@](s) = [¢](t)
forall g € CLMUCALC,  bdSS(s,t) > [[@](s) — [@] (t)]

As noted before, each bound of the fodts,t) > [[¢](s) = [@](t), trivially leads to a
bound of the fornd(s,t) > |[@](s) — [@](t)|. The bounds are tight, and the following
theorem identifies which fragments of quantitativealculus suffice for characterizing
each branching distance.

Theorem 10 For all QTSs, states s and t, ande [0, 1], we have
b (S.t) = SUB, . mucaccs (3.~ 1) [9]
by (s,t) = sup,
bd§a<87t> = Sup(pECLMUCALC (H,V,MJ}-)H
bdgs(&t) =sup, eCLMUCALC (3, ~1+)[[(p]](3) - [[(pﬂ (t)

s

eCLMUCALCa(3,~7+)[

The next result shows that the operafofor ~ ), which is not present in the ordinary
u-calculus, is necessary to characterize the branching distances. This parallels a result
of [5] for a metric related tdd®S on labeled Markov chains, and a result of [11] for
Markov decision processes and games.

Theorem 11 There is a finite QTS and two states s and t such that, far &ll(0, 1],
bdSS(s,t) = bd}S(s,t) > 0 and for all ¢ € CLMuCALC that do not containi- and ~ ,

we have[e](s) = [¢](t).

Proof (sketch).Consider again the QTS in Figure 2 and take- 1. Thenbd>(s;t) =
bd*S(s,t) = 0.2. Theorem 5 states that formulas from1@( ,<) are not sufficient for
distinguishingsfromt. Compared to QrL, theu—calculus allows to specify branching
formulas and take fixpoints of expressions. However, in the example here, these capa-
bilities do not help, since, starting froeor t, the only branching points occurs in the

first state. B
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Fig. 3. Linear versus branching distances on a deterministic QTS.

Ids, bdSs bd3s
7N _A/ N ] A/ N 3
bdfs bd3? bdis bd3?2
\ / o o o o
Id2 PN I N
bdés b_déa bdga |dg{ bdés b_déa bdga
N D

b2 S, Td3 bi®
7
Id2

(b) Branching distances.

(a) Linear distances. (c) All distances.

Fig. 4. Relations between distances, whdre» g meansf < g. The dotted arrows collapse to
equality for boolean, deterministic QTSs.

4.3 Computing the branching distances

Given afinite QTS = (S 7, X, [-]) arational numbee € [0, 1], andx € {Ss Sa As, Aa},
we can computedy (s,t) for all statess,t € Shy computing in an iterative fashion the
fixpoints of Definition 4. For instanc&d,? can be computed by lettirgf (s,t) = 0 for
alls,t € Sand, fork € IN, by lettingd“**(s.t) = pd(s,t) L - maxy,., g Miny .., d4(8 1),
for all s,t € S Thenbd}, = lim,_ d¥, and it can be shown that this and the other com-
putations terminate in at mo&? iterations. This gives the following complexity result.

Theorem 12 Computing by for x € {Ss SaAs,Aa}, a € [0,1] and a QTS can be
done in time @|.7|%).

5 Comparing the Linear and Branching Distances

Just as similarity implies trace inclusion, we have Hdth< bd*? andld® < bd”s; just

as bisimilarity implies trace equivalence, we h&®@< bd>andid? < bdS2 Moreover,

in the non-quantitative setting, trace inclusion (resp. trace equivalence) coincides with

(bi-)similarity on deterministic systems. This result generalizes to distances over QTSs

that are both deterministic and boolean, but not to distances over QTSs that are just
deterministic.

Theorem 13 The following properties hold.

11



1.

2.

The relations in Figure 4(c) hold for atk € [0, 1]. Moreover, fora € (0,1], the
inequalities cannot be replaced by equalities.
For all boolean, deterministic QTSs, alle [0, 1], we have

Id2 =bdj?® Id5, =bd)® [d2 =bdy® Id =bd;®.

These equalities need not to hold for non-boolean, deterministic QTSs.

To see that on deterministic, non-boolean QTSs, the linear distances between states can
be strictly smaller than the corresponding branching ones, consider the QTS in Figure 3.
We assume that > 1; a similar example works ifz < 3. Thenldg(s,t) = Id5(s;t) =

1d2 (s,t) =1d$(s,t) = 2o, while bdj?(s,t) = bd;3(s,t) = bdj?(s,t) = bdiS(s,t) = 2.
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