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ABSTRACT

Objective: In postanoxic coma, EEG patterns indicate the severity of encephalopathy and typically evolve
in time. We aim to improve the understanding of pathophysiological mechanisms underlying these EEG
abnormalities.
Methods: We used a mean field model comprising excitatory and inhibitory neurons, local synaptic con-
nections, and input from thalamic afferents. Anoxic damage is modeled as aggravated short-term synap-
tic depression, with gradual recovery over many hours. Additionally, excitatory neurotransmission is
potentiated, scaling with the severity of anoxic encephalopathy. Simulations were compared with contin-
uous EEG recordings of 155 comatose patients after cardiac arrest.
Results: The simulations agree well with six common categories of EEG rhythms in postanoxic
encephalopathy, including typical transitions in time. Plausible results were only obtained if excitatory
synapses were more severely affected by short-term synaptic depression than inhibitory synapses.
Conclusions: In postanoxic encephalopathy, the evolution of EEG patterns presumably results from grad-
ual improvement of complete synaptic failure, where excitatory synapses are more severely affected than
inhibitory synapses. The range of EEG patterns depends on the excitation-inhibition imbalance, probably
resulting from long-term potentiation of excitatory neurotransmission.
Significance: Our study is the first to relate microscopic synaptic dynamics in anoxic brain injury to both
typical EEG observations and their evolution in time.
© 2017 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights
reserved.

1. Introduction

Of all comatose survivors of cardiac arrest, 46-48% are alive and
independent in activities of daily living after 6 months (Hofmeijer
et al,, 2015; Nielsen et al., 2013). Continuous electroencephalogra-
phy (cEEG) in the first 24 h after resuscitation allows reliable iden-
tification of 50% of patients with either a good or poor outcome
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(Hofmeijer et al., 2015). Not only the EEG abnormalities as such,
but also their timing and evolution are crucial indicators of the
severity of the ischemic injury and prognosis (Tjepkema-
Cloostermans et al., 2015). In the first days after an anoxic event,
the EEG usually evolves in fixed sequences (Cloostermans et al.,
2012; Jeorgensen and Holm, 1998; Oh et al., 2015; Tjepkema-
Cloostermans et al., 2015), and some EEG patterns are highly speci-
fic for postanoxic encephalopathy (Hofmeijer et al., 2013). Some of
the transitions observed indicate good neurological recovery,
whereas other have a strong association with a poor outcome.
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The common evolutional pathway for patients with a good out-
come is from no measurable cortical activity (“isoelectric” EEG),
via intermittent cortical activity (“burst-suppression EEG”) to con-
tinuous activity (Jergensen and Holm, 1998). For patients with
poor outcome, either a delayed evolution (Hofmeijer et al., 2015),
or highly specific EEG patterns are observed. Examples of the latter
are “burst-suppression with identical bursts” (Hofmeijer et al.,
2013; Ruijter et al., 2015) and generalized periodic discharges
(GPDs) on an isoelectric background (Ruijter et al., 2015). While
these various EEG patterns and transitions can be related to
patients’ outcome, the pathophysiological mechanisms underlying
these EEG abnormalities remain unclear.

EEG activity is mainly a reflection of cortical synaptic activity
(Buzsaki et al., 2012). Therefore, EEG patterns observed in posta-
noxic encephalopathy reflect changes at the synaptic level, espe-
cially because synaptic failure is an early event observed in case
of cerebral hypoxia (Hofmeijer et al., 2014; Hofmeijer and van
Putten, 2012). A better understanding of synaptic mechanisms
underlying the EEG in postanoxic encephalopathy will contribute
to knowledge on the pathophysiology, and possibly open opportu-
nities for treatment.

Neural mean field models can be used to relate microscopic
properties of neurons to macroscopic network behaviour, reflected
by EEG rhythms (Coombes, 2010; Deco et al., 2008). In such mod-
els, individual cell properties and their interactions are replaced by
continuous functions that depend on some form of spatial averag-
ing. Neural mean field models have been successfully used, for
example, to simulate effects of anesthetics on the EEG (Bojak and
Liley, 2005), epileptic seizures (Robinson et al., 2002), intermittent
spike-wave dynamics (Goodfellow et al., 2011), and high-
frequency oscillations (Wendling et al., 2002). With respect to
postanoxic encephalopathy, a neural mean field model revealed a
possible mechanisms underlying GPDs (Tjepkema-Cloostermans
et al., 2014). However, other pathological EEG patterns, such as
burst suppression with identical bursts (Hofmeijer et al., 2013),
and pattern transitions as observed in postanoxic encephalopathy
remain unexplained.

A relevant mechanism of synaptic failure in postanoxic
encephalopathy is short-term synaptic depression, also called
activity-dependent synaptic depression (Tsodyks and Markram,
1997): synapses need time to recover after signal transmission,
for example to restore ion and neurotransmitter gradients. High
neural firing rates limit the maximally achievable postsynaptic
currents. This mechanism plays a role in physiological situations,
and is probably aggravated in postanoxic encephalopathy. Specifi-
cally, this may be the result of presynaptic mechanisms, such as a
dysfunction of plasma membrane Ca?* extrusion systems com-
prised of Ca?* pumps and Na*/Ca?* exchangers (Somjen, 2004)
and a disturbed undocking of synaptic vesicles from the reserve
pool attributable to impaired phosphorylation (Bolay et al,
2002). We assume that these effects are potentially reversible on
a time scale of 24-72 h, in line with the typical recovery time of
the EEG in postanoxic encephalopathy (Cloostermans et al., 2012;
Jorgensen and Holm, 1998; Oh et al, 2015; Tjepkema-
Cloostermans et al., 2015).

A second mechanism, taking place in severe postanoxic
encephalopathy, is potentiation of excitatory neurotransmission.
This mechanism has been substantiated by experimental observa-
tions in hippocampal slices exposed to anoxia (Miyazaki et al.,
1993; Urban et al., 1989), and is compatible with the apparent net-
work hyperexcitability in patients with severe postanoxic
encephalopathy, reflected by a frequent observation of epilepti-
form discharges (Ruijter et al., 2015; Wijdicks and Young, 1994;
Young et al.,, 1990). The most likely cause is anoxic long-term
potentiation (LTP) of excitatory cortical synapses following anoxic
depolarization (Calabresi et al., 2003; Hammond et al., 1994;

Szatkowski and Attwell, 1994). This effect is caused by an increase
of extracellular glutamate concentrations, resulting from reversed
uptake of glutamate in neurons and glia cells (Rossi et al., 2000).
In combination with anoxic depolarization, this induces a long-
term potentiation of N-methyl-D-aspartate (NMDA)-receptor
gated currents (Szatkowski and Attwell, 1994).

In this study, we aim to identify candidate synaptic mecha-
nisms underlying typical EEG patterns and transitions in posta-
noxic encephalopathy by means of a neural mean field model.
We hypothesize that, if synaptic recovery occurs in postanoxic
encephalopathy, this is driven by a gradual improvement of
short-term synaptic depression on a time scale of 24-72 h, and
reflected by improvement of the EEG. Furthermore, we hypothe-
size that increasing severity of hypoxia leads to a stronger potenti-
ation of excitatory synaptic transmission. We incorporated both
these key mechanisms into our computational model. The simu-
lated EEG patterns will be related to clinical EEG data of patients
with postanoxic encephalopathy after cardiac arrest.

2. Methods
2.1. Clinical data collection

Continuous EEG recordings were collected between June 2010
and December 2015 in a large teaching hospital in The Netherlands
(Medisch Spectrum Twente, Enschede). All patients who were
admitted comatose after a cardiac arrest were included, if it was
possible to start EEG recordings within 12 h after resuscitation.
Two-thirds of the selected patients were also included in previous
studies on outcome prediction after cardiac arrest (Cloostermans
et al.,, 2012; Hofmeijer et al., 2015; Tjepkema-Cloostermans et al.,
2015). Twenty-one silver/silver chloride cup electrodes were
placed on the scalp according to the international 10-20 system.
EEG recordings were continued until patients were awake or until
the decision to withdraw treatment was made, with a maximum of
five days. Additionally collected clinical data include age, gender,
resuscitation details, and maximum levels of sedative medication.
EEG data were not used for decisions regarding treatment with-
drawal. However, treating physicians were not blinded to the
EEG and treatment of electrographic seizures was left to the discre-
tion of the treating physician. The primary outcome measure was
the Cerebral Performance Category (CPC) at six months after car-
diac arrest, assessed by a telephone interview. These scores were
dichotomized into “good” (CPC 1-2, i.e. no or moderate neurolog-
ical disability) and “poor” (CPC 3-5, i.e. severe disability, coma, or
death). The Medical Ethics Committee Twente approved the proto-
col and waived the need for informed consent for EEG monitoring
during the ICU stay and clinical follow-up.

2.2. Statistical analysis

In order to compare patients with good and poor outcomes,
continuous variables were compared using independent samples
t-tests and binary variables using X?-tests. P-values < 0.05 were
considered statistically significant.

2.3. Basic computational model

We used an adapted, spatially homogeneous version of the
“bursting Liley model” (Bojak et al., 2015; Bojak and Liley, 2005;
Liley et al., 2002) for our simulations. This model was used previ-
ously to simulate burst-suppression patterns (Bojak et al., 2015).
Fig.1A gives an overview of the model. It consists of one population
of excitatory (pyramidal) neurons and one population of inhibitory
(inter-)neurons. Excitatory neurons have synaptic projections to
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Fig. 1. Overview of computational model, including activation function and synaptic responses. A: Sketch of the spatially homogeneous Bursting Liley model. It comprises
one excitatory population (E) and one inhibitory neural population (I). Excitatory synapses are indicated with red disks, inhibitory synapses with blue disks. The green lines
indicate input from thalamic fibers. The symbols indicate the various inputs to the excitatory and inhibitor population, respectively. Details on these parameters can be found
in Table A.1. B: The “activation function” for both the excitatory (E) and inhibitory (I) population, showing the relationship between mean membrane potential and
population spiking rates. C: Synaptic response functions for excitatory (red) and inhibitory (blue) synapses. Curves represent the induced postsynaptic potential for a unit of
presynaptic input. The continuous lines indicate the baseline response, the dashed lines the responses after application of a high dose of propofol. Note that we used a higher
dose here (0.25 units) as compared to the simulations (0.15), in order to illustrate the effect. The peak values of the postsynaptic potential are referred to as I', or I';,
respectively. D: Same synaptic response functions as in C, but with the dashed line indicating the excitatory response in case of long-term potentiation (LTP). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

inhibitory neurons and to themselves. Similarly, inhibitory neu-
rons have projections to excitatory neurons and to themselves.
The spike rates of the neural populations depend on the mean
membrane potential. In a hyperpolarized state, neurons will stop
firing, and above a certain threshold potential firing rates will sat-
urate to a maximum frequency (Fig.1B). All connections between
neurons are synaptic connections. Postsynaptic membrane poten-
tials are given by the convolution of the incoming firing rate with
the “synaptic response function”, as shown in Fig.1C and 1D. The
peak amplitudes of the synaptic response functions are referred
to as I'. and I'; for excitatory and inhibitory synapses, respectively.

The bursting Liley model includes short-term synaptic depres-
sion. This implies that the postsynaptic peak amplitudes I'. and
I'; decrease as a function of presynaptic firing rates and recover
with time constants 7 and 7{*, respectively. Without noisy input
from thalamic fibers, the average membrane potentials remain at
some equilibrium value. For presynaptic firing rates above this
equilibrium value postsynaptic peak amplitudes will decrease,
and for presynaptic firing rates below the equilibrium value post-
synaptic peak amplitudes will increase (see Appendix A for model
details).

2.4. Adaptations to the bursting Liley model

To model the evolution of the EEG, we assumed the short-term
synaptic recovery time constants 7/ and t/* to vary slowly, on a
time scale of hours. We hypothesize that, briefly after the anoxic
event, these constants are very high (>100 times baseline value)
and then slowly decay to their baseline values. This behaviour

reflects the slow recovery of presynaptic metabolic processes in
the postanoxic period. To model the effect of anoxic long-term
potentiation of excitatory synapses, we increased the maximum
amplitude of EPSPs (T".). The effect is shown in Fig.1D. Candidate
mechanisms include an increased expression of NMDA receptors
or long-lasting elevations of modulators that potentiate NMDA-
receptor opening, induced by the brief anoxic period (Szatkowski
and Attwell, 1994). An alternative scenario, which we will not con-
sider here, would be to increase the EPSP decay time, resulting in
similar overall behaviour. In the following, we will indicate the
fractional increase in I', as the “LTP-factor”, with a higher LTP fac-
tor indicating more severe hypoxic damage. Note that in the orig-
inal bursting Liley model I, is reduced and may recover with time
constant T/* to its baseline value, while in our adaptation of the
Liley model I'. may increase above its baseline value, reflecting
excitatory potentiation. See Appendix A for details on the model
equations.

2.5. Effects of anesthetic drugs

Most patients admitted to the Intensive Care Unit after a cardiac
arrest are treated with targeted temperature management and
sedation (Nielsen et al., 2013). In Medisch Spectrum Twente,
patients are usually sedated with propofol. The bursting Liley
model includes the effect of isoflurane, another general sedative
agent. Fig.1C shows how sedation modifies the synaptic response
function. Sedation increases the duration of inhibitory postsynap-
tic currents (IPSPs) and reduces the peak amplitude of excitatory
postsynaptic currents (EPSPs). Although the model is quantita-
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tively based on the effects of isoflurane, we assume propofol to
have the same qualitative effects, since the GABA, receptor is the
most important target site of both drugs (Garcia et al., 2010).

2.6. Numerical simulations

Differential equations were solved using the Euler-Maruyama
method with a time step of 0.1 ms. For all simulations, we used
the parameter values listed in Table A.1, unless stated otherwise.
The basic set of parameters was chosen to generate a physiological
alpha-rhythm (Liley et al., 2002; Tjepkema-Cloostermans et al.,
2014).

In all simulations, EEG signals of 75 s were generated. The first
15 s of each simulation were ignored to exclude transient effects.
The membrane potential V.(t) of the excitatory population was
used to represent the EEG signal, as was done for example in
(Bojak et al., 2015). The simulations thus resulted in a single time
series, reflecting a single channel representation of the EEG. We
considered this to be sufficient, since EEG abnormalities in posta-
noxic encephalopathy are typically spatially homogeneous.

Three parameters were varied in the simulations. Both the exci-
tatory (i) and inhibitory (7}*°) synaptic recovery time constants

were varied between their baseline value (500 ms) and 107 ms.
The chosen baseline value agrees with the physiological range of
250 ms to 1000 ms (Tsodyks and Markram, 1997). Because excita-
tory synapses probably recover slower than inhibitory synapses,
we only considered simulations with 7/ > t/* as physiologically
plausible (Khazipov et al., 1995; Tjepkema-Cloostermans et al.,
2014). The LTP-factor was varied between 0 and 5. The order of
magnitude for the LTP-factor was chosen based on experimental
work in hippocampal slices after anoxia, where the maximum EPSP
slope increased already twofold after 5 min of anoxia (Urban et al.,
1989). Simulations were performed both without the effect of
propofol and with a moderate dose of propofol (0.15 units), using
Matlab (MATLAB and Statistics Toolbox Release R2015b, The Math-
Works, Inc., Natick, Massachusetts, United States). The Matlab code
used for the model simulations is included as Supplementary
Material (Ruijter2017_model.m).

2.7. Categorization of clinical and simulated EEG data

EEG analysis was performed offline. Before any analysis, clinical
EEG data were transformed to the longitudinal bipolar montage.
Five minute artifact-free epochs were selected automatically every
hour, as described previously in (Tjepkema-Cloostermans et al.,
2013). Epochs were filtered using a sixth order zero-phase Butter-
worth bandpass filter with cutoff frequencies of 0.5 and 25 Hz. Cat-
egorization was solely based on quantitative analysis. Epochs were
categorized into one of six categories: normal, low-voltage, discon-
tinuous, burst-suppression, irregular discharges, and periodic dis-
charges. Categorization was based on four features: continuity,
burst-suppression contrast ratio, frequency of epileptiform dis-
charges, and regularity epileptiform of discharges. Continuity was
defined as the fraction of signals free of “suppressions” (Ruijter
et al., 2015). Suppressions were defined as segments with duration
of at least 0.5s with all amplitudes below 10 puV. The burst-
suppression contrast ratio was calculated if continuity was 10-
90% and was defined as the power ratio between “bursts” and
“suppressions”. Quantitative values were derived per channel, after
which the median value was calculated. Discharges were detected
using the algorithm described in (Ruijter et al., 2015). Only gener-
alized discharges, occurring in more than 9 channels simultane-
ously, were taken into account. If the detected discharge
frequency exceeded 0.5 Hz, an irregularity index was calculated,
defined as the standard deviation of the inter-discharge intervals

divided by the mean inter-discharge interval. Epochs were classi-
fied as normal if continuity was higher than 90% and the discharge
frequency was below 0.5 Hz. Epochs with continuity below 10%
were classified as low-voltage. Epochs with 10-90% continuity
were classified as burst-suppression if the burst-suppression con-
trast ratio was 3.5 or higher, and as discontinuous if the burst-
suppression contrast ratio was lower than 3.5. In case of epilepti-
form discharges with frequency of 0.5 Hz or higher, epochs were
either classified as irregular discharges or as periodic discharges,
depending on the irregularity parameter. Fig. 2, in the results sec-
tion, shows detailed criteria, including representative examples of
clinical data and simulated EEG for each of the categories.

In order to facilitate a direct comparison with clinical EEG data,
simulated EEG was filtered and categorized using the same algo-
rithm. Simulated signals were treated as if they were single chan-
nel representations of EEG. Therefore, all detected suppressions
and discharges in the simulated data were treated as if they were
generalized.

3. Results
3.1. Patients

A total of 155 patients were included. Seventy-one had a good
neurological outcome (CPC 1-2), 84 had a poor neurological out-
come (CPC 3-5) after 6 months. Table 1 shows baseline character-
istics of the included patients. As expected, patients with a good
neurological outcome were younger (61 vs. 66 years, p = 0.025),
less often had a noncardiac cause of the arrest (6% vs. 26%,
p < 0.001), and more often ventricular fibrillation (VF) as initial car-
diac rhythm (93% vs. 60%, p < 0.001). Patients with good outcomes
had higher sedative requirements with propofol (3.24 vs 2.71 mg/
kg/h, p=0.004), fentanyl (1.94 vs. 1.53 pg/kg/h, p=0.002), and
remifentanil (7.35 vs. 4.29 pg/kg/h, p = 0.033). Bilaterally absent
N20 responses on a median nerve SSEP were found in 38% of
patients with a poor outcome, and in none of the patients with a
good outcome. There was no statistically significant difference
between patients with good and poor outcomes with respect to
gender, location of cardiac arrest, treatment with hypothermia,
and EEG start or end times.

3.2. Evolution of clinical EEG data

Fig. 3 schematically summarizes the EEG evolution of all
patients. A few representative cases are shown in Fig. 4. We have
grouped patients according to similarities in their evolutional pat-
terns. In 117 cases (75%) the initial EEG was low-voltage. The lar-
gest subset (Fig. 3A) includes 87 patients. These cases fit into a
sequence from low-voltage, via discontinuous to normal EEG. Note
that 63 (72%) of these cases had a good outcome, and that the
chance of a good outcome was higher if there was an early transi-
tion from low-voltage to a discontinuous and normal EEG. Cases in
Fig. 3B and C evolve from low-voltage to discontinuous EEG and, at
some point to epileptiform discharges. Fig. 3B includes patients
with only irregular discharges, Fig. 3C also includes patients with
periodic discharges. Eight cases (40%) in Fig. 3B had a good out-
come, while none of the patients in Fig. 3C survived. For cases in
Fig. 3D and E the common transition is from low-voltage to
burst-suppression EEG. Cases in Fig. 3D do, at some point in time,
improve beyond burst-suppression, and cases in Fig. 3E do not
evolve to other patterns. None of the cases in Fig. 3D and E sur-
vived. Fig. 3F includes cases that showed only a low-voltage EEG.
None of these 11 patients had a good outcome. Note that, for all
groups together, 33 of 34 patients with a ‘normal’ EEG within
30 h after cardiac arrest had a good outcome. Case 143, who died
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1. Discharge frequency > 0.5 Hz
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Satisfies two conditions:
1. Discharge frequency > 0.5 Hz
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Fig. 2. Overview of category definitions, including representative examples of clinical and simulated EEG data. The first column shows 10-s, one channel representations of
clinical EEG data. Below each sample, the case number, hours since cardiac arrest, and bipolar derivation are shown. For each example, the best possible bipolar derivation
was chosen based on visual inspection. The second column shows representative simulated EEG patterns. The parameters used are shown below each simulation. The third
column provides category definitions. Colors shown correspond to the colors used in Figs. 3-6. Note that we allowed for discharges of frequency < 0.5 Hz to occur in normal,
low-voltage, or discontinuous patterns. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

as a result of respiratory problems, is the only exception. Further
note that all 14 patients with no other EEG pattern than low-
voltage in the first 35 h had a poor outcome.

3.3. Simulations

Within the allowed range of parameters, the model generates
all of the six categories of EEG patterns listed in Fig. 2. The category
of EEG pattern depends strongly on the synaptic recovery time
constants, LTP-factor, and propofol dose. Fig.5A shows the spec-
trum of possible EEG patterns for various LTP-factors, with and
without administration of propofol. The parameter planes are com-
posed of the recovery time constants for excitatory synapses (i)
and inhibitory synapses (7}*°), for a fixed value of the LTP-factor.
When time progresses and energy supply is restored, t;* and 7/

will eventually recover towards their baseline values in the lower
left corner. Because we assume that excitatory synapses are
metabolically more severely affected than inhibitory synapses,
only the non-shaded areas (7{* > 7/*°) are considered physiologi-
cally plausible. Besides, parameter values in the shaded areas
(t7¢ < 1i*¢) did not lead to plausible patterns and transitions.

The introduction of LTP changes the range of possible EEG pat-
terns. With LTP =0, the EEG will be normal when the synaptic
recovery time constants 7/ and 7/* are close to their baseline val-
ues. For larger values of the synaptic recovery time constants, dis-
continuous or low-voltage patterns are possible, as well. For
increasing LTP-factor, subsequently, irregular discharges, periodic
discharges, burst-suppression, and low-voltage EEG move into
the spectrum of possible EEG patterns. This indicates that for
higher LTP-values it becomes more likely for the EEG to be in
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Table 1
Baseline characteristics of the patients included.
Characteristic Good outcome (CPC 1-2) Poor outcome (CPC 3-5) P-value
Number of patients 71 (46%) 84 (54%)
Age 61 (29-88) 66 (21-86) 0.025
Female 21 (30%) 26 (31%) 0.850
OHCA 64 (90%) 67(80%) 0.080
Noncardiac cause 4 (6%) 19 (26%) <0.001
VF as initial cardiac rhythm 63 (93%) 46 (60%) <0.001
Treated with hypothermia (33 C) 71 (100%) 83 (99%) 0.360
Patients treated with propofol 70 (99%) 82 (98%) 0.669
Max. propofol rate (mg/kg/h) 3.24 (0.24-7.54) 2.71 (0.89-7.00) 0.004
Patients treated with midazolam 17 (24%) 18 (21%) 0.710
Max. midazolam rate (ug/kg/h) 65 (27-125) 69 (29-143) 0.739
Patients treated with fentanyl 57 (80%) 63 (75%) 0.430
Max. fentanyl rate (pg/kg/h) 1.94 (0.67-3.33) 1.53 (0.63-4.71) 0.002
Patients treated with remifentanil 13 (18%) 18 (21%) 0.630
Max. remifentanil rate (pg/kg/h) 7.35 (2.50-14.7) 4.29 (1.11-13.3) 0.033
Median nerve SSEP 26 (37%) 63 (75%) <0.001
Bilaterally absent N20 response 0 (0%) 24 (38%) <0.001
EEG start time (hours) 6 (2-11) 6 (3-11) 0.795
EEG end time (hours) 68 (27-142) 66 (5-223) 0.661

Numbers are displayed as mean (range), unless otherwise indicated. P-values were calculated with independent samples t-test for continuous variables and with X2-test for
binary variables. EEG start and end times are relative to the time of resuscitation. OHCA: out of hospital cardiac arrest.

one of these pathological states. If propofol is added, effects of the
increased LTP-factor are partially or completely reversed. This
means, for example, that in case of periodic discharges, adding
propofol results in a normal or discontinuous EEG. However, if
the LTP-factor does not change during treatment, these pathologi-
cal patterns will reappear after propofol treatment has ended.

Fig.5B shows representative examples of the simulated EEG
patterns. Note the difference between patterns 2a and 2b, both
classified as low-voltage. In example 2a, from the lower right area
of the parameter space, there is still some visible activity. A closer
inspection of the unfiltered signals indicates that this pattern
results from hyperpolarization, i.e. the mean excitatory membrane
potential V.(t) is below its equilibrium value. In example 2b, gen-
erated in the upper left area of the parameter space, EEG activity is
almost completely suppressed. Here, low-voltage EEG results from
depolarization, i.e. the mean excitatory membrane potential V,(t)
is (far) above its equilibrium value. Further note that “discontinu-
ous” patterns in the simulations have no suppressions, like the
clinical example in Fig. 2, but are rather an amplitude intermediate
between low-voltage and normal EEG patterns.

3.4. Temporal evolution of simulated EEG patterns

In the following, we will relate the possible evolution of simu-
lated EEG to the evolutional pathways of clinical data as shown
in Fig. 3. We assume that briefly after the anoxic event, short-
term synaptic recovery time constants t/¢ and t/* are significantly
increased. When synapses recover from the anoxic injury, these
time constants will slowly return to their baseline values, indicated
by the black circles in Fig.5A. The EEG will therefore always evolve
in this direction, if we ignore effects of permanent failure of
synapses or neural cell death.

Fig. 6 shows four possible evolutional trajectories of the EEG,
corresponding to the subsets of clinical EEG data in Fig. 3. The
observations in clinical EEG data suggest that in most cases the ini-
tial EEG pattern is low-voltage. Therefore, all chosen pathways
start in a low-voltage area. Pathway A leads to the sequence low-
voltage - discontinuous — normal. This pathway is most likely to
occur without LTP (LTP = 0). Pathway B is similar to pathway A,
and eventually the EEG displays irregular discharges. This path-
way requires a slightly higher LTP value (LTP = 0.25). For a moder-
ate LTP-value (0.8), evolution to periodic discharges is possible

(Pathway C). Pathways D and E both include the transition from
low-voltage to burst-suppression EEG. This transition is only possi-
ble for high LTP-values (LTP > 2). Note that burst-suppression can
only occur in case of high values of the synaptic recovery time con-
stants 7l and t/*. This indicates that both aggravated short-term
synaptic depression and potentiation of excitatory neurotransmis-
sion are required for burst-suppression patterns. See Appendix B
for a mathematical description (in terms of bifurcations) of the
transitions between the simulated EEG patterns.

3.5. Comparison between clinical data and simulations

If we assume that both the LTP-factor in simulations and CPC-
scores in patients are measures for the severity of hypoxic injury,
there are striking similarities between the simulations and the
clinical EEG data. Patients had the highest (75%) chance for a good
neurological outcome if their EEG evolved in the sequence low-
voltage - discontinuous - normal (Fig.3A). In the model simula-
tions, this type of evolution was only possible for low or absent
LTP. Patients who evolved to irregular discharges from a discontin-
uous or normal EEG (Fig.3B) had a moderate chance of a good out-
come (40%). In the model simulations, this evolutional pathway
was most likely to occur for intermediate LTP values. None of the
patients with periodic discharges (Fig.3C), or patients who evolved
from low-voltage to burst-suppression patterns (Fig. 3D and E) had
a good outcome. In the simulations, these patterns were only pos-
sible for high or very high LTP-factors.

Fig. 3 suggests that not only the sequence of EEG patterns deter-
mines the outcome, but also the speed by which the EEG evolves
through the transitions. From Fig.3A, for example, follows that
patients more likely had a poor outcome if they spent more time
in low-voltage EEG. In terms of the model, there are two possible
explanations. The first possibility is that the initial synaptic time
constants in these patients are far away from their baseline values
(thee > ies or T/ > 7/%), indicating that the synaptic metabolism
initially is severely affected. The second possibility is that the rate
of synaptic recovery in these patients (i.e. the speed of decay of T}
towards ;) is slower.

Finally, it was not possible to categorize patients from Fig.3F
into one of the evolutional pathways of the model. Their low-
voltage patterns can either be the result of hyperpolarization,
(indicating mild hypoxic injury), depolarization (indicating severe
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anoxic injury), or irreversible synaptic failure (also indicating sev-
ere anoxic injury). Regarding the fact that all these patients had a

D irregular discharges
- periodic discharges

Fig. 3 (part 1). Evolution of clinical EEG data. Each row represents one case, and is preceded by the case number and CPC-score after 6 months. Cases with good outcomes are
shown in green, cases with poor outcomes in red. Data points are shown per hour, and are based on quantitative analysis of a 5-min artifact-free epoch. Only data of the first
72 h after cardiac arrest are shown here. Hatched areas indicate that EEG was recorded during propofol administration. Cases have been grouped by common characteristics
in the evolution of their EEG. Within groups, cases have been sorted by the timing of the first non-low-voltage EEG pattern. Cases numbers preceded by ' died as a result of a
second cardiac arrest, respiratory problems, or hemodynamic instability. In all other cases who died (CPC = 5), life-supporting treatment was withdrawn, at least partially
based on the (suspected) poor neurological prognosis. A: cases with EEG sequence from low-voltage, via discontinuous to normal. (part 2). B: cases evolving from low-voltage,
via discontinuous EEG to irregular discharges. C: cases evolving from low-voltage, via discontinuous EEG to periodic discharges. D: cases evolving from low-voltage, via burst-
suppression, to other patterns. E: cases with sequence low-voltage - burst-suppression - low-voltage. F: cases in whom no other pattern than low-voltage EEG was detected.
Note that midazolam was used as sedative medication instead of propofol in case 26 from hour 6 to 72, and in case 101 from hour 5 to 22. (For interpretation of the references

E artifacts
[//////] propofol administration

poor neurological outcome, depolarization and irreversible synap-
tic failure are most likely.
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Fig. 3 (part 2). (continued)

4. Discussion

In this study, we used a mean field computational model to
explain pathological EEG patterns for various grades of severity
of postanoxic encephalopathy. The model incorporates mecha-
nisms that modify the dynamics of synapses. It successfully repro-
duces commonly observed EEG patterns such as the physiological
alpha rhythm, burst-suppression patterns, irregular and periodic
discharges, and low-voltage EEG. In addition, the model correctly
predicts some of the common evolutionary pathways of the EEG.
In situations with mild hypoxic injury, reflected by a low LTP-
factor, it correctly predicts the transition from low-voltage EEG,
via discontinuous patterns, to normal EEG patterns. For severe

injury, reflected by a high LTP-factor, it predicts the transition from
low-voltage patterns to burst-suppression patterns and periodic
discharges, without improvement to normal EEG patterns. This
indicates that anoxic long-term potentiation of excitatory neuro-
transmission and a transient aggravation of short-term synaptic
depression are plausible pathophysiological mechanisms of posta-
noxic encephalopathy. Furthermore, our findings support the
notion that excitatory synapses are more severely affected by
anoxic injury than inhibitory synapses.

Although some of the observed patterns, such as periodic dis-
charges and burst-suppression, have been simulated successfully
before (Bojak et al., 2015; Tjepkema-Cloostermans et al., 2014),
the dynamics of EEG evolution in postanoxic encephalopathy,



1690 BJ. Ruijter et al./Clinical Neurophysiology 128 (2017) 1682-1695
6 hours 12 hours 48 hours 72 hours
B et V] B T P P At N P A
e . Ao NS N o e el NP i
—p PSS s A AL oot o P,
Example 1 PN pp AN gty ol Tt P\ o e Pl oo m
g, » B Py v SV F S B e A Ve e ¥ i W B A s ot P i e AT
Ao e A PN A reg At B e g e i A ol VA INNS TN AN
Figurs 34, = | | = = | |t
~ouvapat r~t e P P Py AP AN M
o TS| | oA
A A g e ettt s S N AN AP AN e g oot PN AT N NSNS e
good outcome PO AN A
ca | = | | == | B
et PP tiral woegf P R Y e
~
B e i o i st ¥ ol e ' it e At s el O e ot et e m
A, Mol ovnat PN\t " e St~ s~
el - vyl gt N VN e e .
e AA e e Ny
S~ " 2 Py
A A e~
Example 2 e e ~
A\t AN At oo v
N el s et e s
Figure 3B, —~~ e~ A o W NWIN WA ARV WA
WA AN I v VP Y
case 132, — v o~ AR A, v u v
good outcome o) fémm JAlive L
(CPC 2) esamepemrennmerent| [l 04410
e o e ot A Y W
vy LW'I
:‘q VW w AL AL v
s ey mxmm
O o e RN AANNNANANSANANANANNS
Figure 3D, NN S A e ANt gernd m
NN e A e,
poor outcome s e e hhamamatie e
(CPC 5) M Yo vy 7 L lzjrf:f;-
y o 1y et
: = R RN
Al N #- o
Example 4 j',-:‘
Figure 3E, A
case 18, ¥ e
poor outcome
(CPC 5) g
1100 pv
2s
I normal I discontinuous irregular discharges
I 0w voltage burst-suppression I periodic discharges

Fig. 4. Representative examples of the evolution of clinical EEG-data. The first example (case 75, Fig. 3A) readily improves from a discontinuous to a continuous, diffusely
slowed pattern and thereafter remains continuous throughout the recording. The second example (case 132, Fig. 3B), evolves from low-voltage to a continuous pattern and
then shows a transient period with irregular discharges, a few hours after treatment with propofol was stopped. The third example (case 94, Fig. 3D) is initially isoelectric and
evolves via burst-suppression with identical bursts to generalized period discharges. The last example (case 18, Fig. 3E) evolves from isoelectric to burst-suppression and

eventually to a low-voltage EEG.

including typical transitions between various EEG patterns, were
never addressed.

4.1. Role of short-term synaptic depression

Previous research indicates that aggravated short-term synaptic
depression is most likely the result of presynaptic mechanisms,
such as a dysfunction of plasma membrane Ca?* extrusion systems
(Somjen, 2004) and a disturbed undocking of synaptic vesicles
attributable to impaired phosphorylation (Bolay et al., 2002).
Although a depletion of ATP could account for these effects, this
is not likely. Simultaneous measurements of EEG and ATP levels
in rat brains indicate that ATP level recovery is much faster than
functional recovery as measured with EEG (Ljunggren et al.,
1974; Naruse et al., 1984). However, some of the amino acid levels

associated with the citric acid cycle may remain abnormal for a
prolonged period (Ljunggren et al., 1974) and secondary mitochon-
drial failure may occur (Siesjo et al., 1999). Another potential
mechanism is the failure of neural protein synthesis. In animal
experiments, it has been shown that protein synthesis recovers
on a time scale of 24 h after the anoxic event (Bodsch et al.,
1986), which is essentially the same time scale on which the EEG
recovers.

Because the net effect of short-term synaptic depression is a
decrease of postsynaptic currents (PSPs), other mechanisms that
decrease PSPs, such as a decrease in the number of postsynaptic
neurotransmitter receptors, may also lead to some of the effects
observed. Low-voltage patterns, for example, can be explained by
such a mechanism. However, short-term synaptic depression has
the advantage that it also facilitates periodic patterns, by means
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Fig. 5. Overview of the simulations for different scenarios, with LTP ranging from LTP = 0 to LTP = 5, and with and without propofol. A: Overview of possible EEG patterns in
various regions of the parameter space. The consecutive columns represent an increasing grade of anoxic injury, reflected by increasing LTP-values from left to right. The
upper row represents the situation without propofol, the lower row the situation with a moderate dose (0.15 units) of propofol. Only the non-shaded area, where excitatory
neurotransmission is more severely affected than inhibitory neurotransmission, is considered physiologically plausible. The numbers in the subplots refer to the examples in

panel B. The black circle in the bottom left corner is put around the baseline value of the synaptic recovery time constants. B: Representative examples of simulated EEG
patterns.

of its feedback-loop (Bojak et al., 2015; Liley and Walsh, 2013; come differ slightly from our results, as we used a stricter, quanti-
Tabak et al., 2000). Our findings indicate that excitatory synapses tative definition for continuity of the EEG.
are more strongly affected by effects of activity-dependent synap-
tic depression than inhibitory synapses. Simulations with equal
recovery times for excitatory and inhibitory synapses, or with
longer recovery times for inhibitory synapses, did not produce
any plausible results.

The model observation that increasing severity of ischemic
damage results in a slower restoration of background continuity

is in line with previous findings. In studies on the prognostic value patients with severe postanoxic encephalopathy, reflected by a fre-

of continuous EEG in postanoxic encephalopathy it was found that  gyent observation of epileptiform discharges (Wijdicks and Young,
continuous EEG activity within 12 h after cardiac arrest indicates a 1994; Young et al., 1990). Since anoxic long-term potentiation is

good outcome, whereas outcome is always poor is there if still no independent of Ca?* dependent presynaptic neurotransmitter

measurable EEG activity after 24 h (Hofmeijer et al., 2015). Note  rajease, there is no paradox between synaptic depression and a rise
that these findings on timing of EEG patterns in relation to out-  jy extracellular glutamate levels (Ikeda et al., 1989; Martin et al.,

4.2. Potentiation of excitatory neurotransmission

Our results indicate that anoxic long-term potentiation of exci-
tatory synapses is a plausible mechanism underlying certain
pathological EEG patterns observed in postanoxic encephalopathy.
It is compatible with the apparent network hyperexcitability in
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Fig. 6. Possible evolutional pathways of the simulated EEG, shown as through the parameter plane. The letters used correspond to the evolutional pathways of clinical data in
Fig. 3. A: Parameter plane in case of no LTP (LTP = 0). Trajectory A leads to a sequence from low-voltage, via discontinuous to normal EEG, like the clinical cases in Fig. 3A. B:
Parameter plane for mild hypoxic injury (LTP = 0.25). Trajectory B leads to the sequence low-voltage - discontinuous - normal - irregular discharges, corresponding to Fig. 3B.
C: Parameter plane for moderate hypoxic injury (LTP = 0.8). Trajectory C leads to the sequence low-voltage - discontinuous - normal - irregular discharges - periodic
discharges, corresponding to Fig. 3C. D: Parameter plane for severe hypoxic injury (LTP = 5). Trajectory D leads to the sequence low-voltage - burst-suppression - other
patterns, corresponding to Fig. 3D. Trajectory E leads to the sequence low-voltage - burst-suppression - low-voltage, corresponding to Fig. 3E.

1994). For low LTP-values it appears that recovery is still possible.
For example, in Fig.3B, some patients with irregular discharges
improved to a normal EEG and had a good outcome. However,
our clinical EEG data suggest that some evolutionary pathways
always lead to a poor outcome. For example, in our dataset none
of the patients who developed burst-suppression patterns or peri-
odic discharges survived. This suggests that there may be an LTP
threshold value that always leads to a poor outcome, if exceeded.
This can be explained by the fact that LTP is a potential cause of
secondary neural cell death, for example as a result of excessive
postsynaptic calcium influx (Szatkowski and Attwell, 1994).

On the time scales considered in this work, we assumed the LTP
of excitatory neurotransmission to be permanent and static. If LTP
does not cause excitotoxicity leading to secondary neural death, it
is likely that its effect will be reversible. A possible mechanism is
synaptic scaling (Turrigiano, 2008). In this form of homeostatic
plasticity, excitatory synapses increase or decrease their strength
in order to maintain neural firing rates. In order to achieve physi-
ological postsynaptic firing rates, synaptic scaling mechanisms will

normalize synaptic strength on a time scale of days. This may
explain the fact that, eventually, after days, many EEG patterns
observed in postanoxic encephalopathy evolve to continuous pat-
terns, even in patients with a poor outcome (Cloostermans et al.,
2012; Jorgensen and Holm, 1998). However, such EEGs are typi-
cally characterized by a lower voltage and slower rhythms, pre-
sumably resulting from a significant loss of number of synapses
of neurons.

4.3. Effect of propofol

The model simulations show that with the application of propo-
fol, for low and intermediate LTP values, irregular and periodic dis-
charges can be suppressed. By enhancement of inhibitory synaptic
neurotransmission and inhibition of excitatory neurotransmission,
propofol directly antagonizes the effect of long-term potentiation.
This finding agees with observations in the clinical EEG data: none
of the patients with good outcome, who are supposed to have little
or moderate anoxic LTP, showed epileptiform discharges during
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propofol treatment On the other hand, propofol application was
not sufficient to suppress epileptiform discharges in all number
of patients with poor outcome, who presumably have a strong
anoxic LTP. The model predicts that the application of propofol
only temporarily suppresses periodic discharges, unless the LTP-
factor decreases during treatment. It is unlikely that synaptic scal-
ing mechanisms will account for this effect, as propofol treatment
normalizes postsynaptic firing rates.

4.4. Generalization of findings

Some of the EEG abnormalities simulated with our model are
not unique for postanoxic encephalopathy. For example, GPDs
can also be observed in other conditions, most commonly meta-
bolic encephalopathies, CNS infections, and acute stroke.
(Foreman et al., 2012). Since the time course of synaptic failure
and LTP of excitatory neurotransmission are specific for postanoxic
encephalopathy, our model findings cannot be generalized to these
conditions. However, all conditions associated with GPDs readily
affect synaptic neurotransmission, since it is one of the earliest
events in case of energy depletion or metabolic derangements
(Hofmeijer and van Putten, 2012). Therefore, it seems likely that
GPDs in all these conditions result from (selective) synaptic failure,
leading to an imbalance between excitatory and inhibitory
neurotransmission.

4.5. Limitations

By construction, a computational model like ours is a simplifica-
tion of the neural network dynamics underlying the EEG. The main
limitation of our model is that spatial aspects are not incorporated.
In fact, we only simulated a single EEG channel. We find this rea-
sonable since cerebral perfusion is diffusely affected after cardiac
arrest, and EEG patterns in postanoxic coma are typically spatially
homogeneous. However, particular phenomena, such as bilateral
synchronization of burst suppression patterns, are not explained.
Further, the lack of spatial heterogeneities may explain that the
model generates a single pathological burst type, only, similar to
epileptiform or identical bursts (Hofmeijer et al., 2013). Using the
spatio-temporal Liley model one can simulate bursts with physio-
logical burst content, as induced by anesthetic drugs, too (Bojak
et al., 2015).

Our model is also limited by some of the assumptions. For
example, we did not incorporate the effects of primary or sec-
ondary cell death, and neither did we take into account the effects
of a disturbed ion balance on the cellular excitability. We assume
this reasonable because EEG rhythms mainly represent synaptic
currents (Buzsaki et al., 2012). It would, in principle, be possible
to account for disturbed ion balance by adjusting the neural activa-
tion curve (S-curve) of the model, as was done for example by
Zandt et al. (2014). The shape of the neural activation curve used
in our model suggests that for high membrane potentials, the pop-
ulation firing rate saturates to its maximum value. However, above
a certain membrane potential, a depolarization block can have sig-
nificant influence on the dynamics (Meijer et al., 2015). We
assumed for simplicity that anoxic LTP takes place immediately
after cardiac arrest. This is not true, as LTP generally arises in hours.
In animal experiments, the maximum increase in excitatory neuro-
transmission took place 5-10 h after the ischemic event (Miyazaki
et al, 1993; Urban et al., 1989). Finally, we assumed that all
synapses are affected by hypoxia, and that all excitatory synapses
or inhibitory synapses are affected in the same way, including
intracortical, cortico-cortical, and thalamocortical synapses. How-
ever, experimental evidence shows that the vulnerability depends
on the type of cell or synapse (Martin et al., 1994). However,
despite these limitations, our model faithfully simulates the main

characteristic EEG patterns observed in patients with a postanoxic
encephalopathy, and their temporal changes.

4.6. Conclusions

We simulated frequently observed evolving EEG patterns in
postanoxic encephalopathy using a neural mean field model. The
simulations indicate that aggravation of short-term synaptic
depression and potentiation of excitatory neurotransmission play
a key role in the pathophysiology of postanoxic encephalopathy
and recovery, as well as in the generation of EEG abnormalities.
Impairment of synaptic functioning is more pronounced in excita-
tory than in inhibitory synapses. The model predicts that general-
ized periodic discharges result from a potentiation of excitatory
neurotransmission and are essentially resistant to treatment.
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Appendix A. Model equations and parameters

The spatially homogeneous bursting Liley model consists of
eight coupled differential equations:

ng — Ve(t)

TVe(t) = VI — Vo (t) + Ve vt

Lee ()

VeV (t)
- Ve — Vit Ve — Vit
i) = Vi Vi) + o ) + et k(). (A2
e i i i

7ee(t) =—(Y.+ ?E)ieE(t) — Ve Velee(t) + %e"""/ﬂ"greg)

% (NLSe(Ve(D)) + Pec (t)), (A3)
Tai(t) = — (7, + Je)lei(t) — PeTelei(t) + Pee?e/ " Te(1)

x (NESe(Ve(1)) + Pai(0)), (A4)
Tie(t) = —(7; + P)lie(t) — 7 Jilie(£) + i€ T TONLS(Vi(t)),  (A5)
Ti(t) = —(9; + P0la(t) — yili(6) + P T T(ONIS(Vi(0),  (A6)
Felt) = W ptors, o)), (A7)
£ = S s i (18)

Table A.1 gives a physiological interpretation of the parameters
and their numerical values. The functions S¢(V,) and parameters
Vi T T, and p,, (with k = e, i) are not listed in the table but will
be discussed below. Equations (A.1) and (A.2) determine the
dynamics of the mean membrane potentials of the excitatory
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Table A.1
Model parameters, their symbols, and default values (see Liley et al., 2002).
Parameter Symbol Default
values
Mean soma membrane potential Ve, Vi n.a.
Mean resting membrane potential vt —-70 mV,
Vf“[ -70 mV
Mean equilibrium potential associated with vel, qu 45 mV,
excitation or inhibition -90 mV
Total number of connections that a cell of type e, i NL,, Ngi 3000, 3000
receives from excitatory cells via intracortical
fibers
Total number of connections that a cell of type e, i N[{L‘ lei 500, 500
receives from inhibitory cells
Excitatory, inhibitory postsynaptic potential peak FS, r? 0.71 mV,
amplitude 0.71 mV
Excitatory, inhibitory postsynaptic potential rate 79, 99 30057,
constant 65571
Passive membrane time constant Te, Ti 0.094 s,
0.042 s
Excitatory, inhibitory population thresholds ey Wi -50 mV,
-50 mV
Excitatory, inhibitory population mean maximal Spex, 500571,
firing rates gmax 5005
Mean excitatory input to excitatory, inhibitory cells  p,., p,; 3460571,
5070s7!
Standard deviation of excitatory input to excitatory  sd(p,.)  1000s'
cells
Inhibitory input to excitatory, inhibitory cells Pie»Dii 0s71,0s7!
Standard deviation for firing threshold in excitatory, a., 0; 5mV, 5mV
inhibitory populations
Recovery time constant for activity dependent Thee, 0.55,05s
synaptic depression T
Depletion constant for activity dependent synaptic plep, 0.003,
depression pidep 0.003

(Ve) and inhibitory (V;) neural populations, respectively. These
potentials depend on the synaptic currents I,,(t) with n,m =e, i,
described by Egs. (A.3)-(A.6). Note that in absence of synaptic cur-
rents, the mean membrane potentials decay to their resting values
Vi®t and VI*, respectively. The following activation functions relate
mean membrane potentials to population firing rates:

Qmax
_ €
T 1 4 e~ V2WVe-tto)/0e

Se(Ve) (A.9)

Q:nax
Si(Vi) :m- (A.10)

The system of equations is driven by white noise input, incorpo-
rated via p,,. This parameter is defined as p,, = Pee + P, Where pe.
is the mean excitatory external input and p;, white noise with
standard deviation sd(p,,). The external excitatory input to inhibi-
tory synapses (p,;) is constant: p,; = Dei.

For our simulations, we chose a set of baseline parameter values
that result in a physiological alpha rhythm. These values were used
before in (Liley et al., 2002) and (Tjepkema-Cloostermans et al.,
2014) and are shown in Table A.1. We used the mean membrane
potential of the excitatory population V. (t) as ‘EEG signal’, as was

done in for example (Bojak et al., 2015).

A.1. Synaptic time constants (y, and Jy)

Without anesthetics, the rise and decay times of the postsynap-
tic potentials are dictated by the baseline synaptic time constant
9. The bursting Liley model assumes that anesthetics only affect
the decay rate of the inhibitory postsynaptic potential. To alter
the decay rate without changing the rise rate, the time constants

7 and 7y are introduced, as was done for the first time in (Bojak
and Liley, 2005):

— VgS,((C)

Y= a0 —1° (A11)

’)jk = eﬁk(c)yw
where ¢(c) is a monotonically increasing function of the anesthet-
ics concentration c. With this parameterization, anesthetics
increase the PSP decay time, without affecting its rise time. In the
limit ¢ — 0, indicating no treatment with anesthetics, &(c) — 0
and 7, = Jic = 75,

In our model, we aimed to model the effects of propofol.
Although ¢(c) is quantitatively based on the effects of isoflurane
(Bojak and Liley, 2005), we assumed propofol to have the same
qualitative effects, since the GABAA receptor is the most important
target site of both drugs (Garcia et al., 2010).

A.2. Resting value of the maximum postsynaptic potential (T}*")

Assuming that the system of equations starts at equilibrium at
t = 0 with Vi(t = 0) = V) and T'(t = 0) = T}, it follows from Eqgs.
(A.7) and (A.8) that the resting value of the maximum postsynaptic

potential is (Bojak et al., 2015):
D = T+ 1 pSe(Vi)Hi(c), (A12)

with 0 < Hi(c) < 1 a Hill function depending on the concentration ¢
of anesthetic agent:

0.707*%

) = o707 o A
0.79*® + 0.56¢26
Hi(c) = X T (A.14)

This function is quantitatively based on the effects of isoflurane
(Bojak and Liley, 2005). Note that EPSP amplitudes are more
reduced by anesthetics than IPSP amplitudes.

For our simulations, we made a few adaptations to the equa-
tions above. First, we assumed the Hill Egs. (A.13) and (A.14) of
isoflurane to hold qualitatively for propofol. Then, we multiplied
postsynaptic potentials with G,(LTP) > 1, a function of the long
term potentiation factor LTP:

Ge(LTP) = 1 + LTP, (A15)

Gi(LTP) = 1. (A.16)

So, only excitatory synapses are affected by anoxic long term
potentiation. Finally, for computational efficiency, we made the
approximation T'y(1 + T p{®S,(Vy)) ~ I't. This approximation
did not qualitatively influence the simulation results. The final
expression for the resting value of the maximum postsynaptic
potential in our model was therefore

7% = TOH, (c) Gy (LTP). (A17)

Appendix B. Mathematical description of transitions between
simulated EEG patterns

The transitions between simulated EEG patterns can also be
described mathematically. Let us consider the numbered areas in
Fig.5A. If we start in region 2a, i.e. the hyperpolarized state, we find
a stable steady state. Adding (sensory) noise yields small fluctua-
tions. Moving towards region 3 the fluctuations become larger in
amplitude. Next when moving into region 1, the steady state exhi-
bits a supercritical Hopf bifurcation such that stable oscillations
occur in the absence of inputs. With noise the fluctuations increase
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in amplitude. This illustrates that the demarcations of these
regions are slightly arbitrary. The transition from region 1 to 5
reveals a drastic change in excitability. In region 5, the fluctuations
resemble those of region 1, but here they may evoke an occasional
spike by the noise. Moving from region 5 to 6, the small oscillation
is no longer stable through a saddle-node bifurcation. From region
6 to region 2b we find again a supercritical Hopf bifurcation which
results in depolarization block. In between, we find burst-
suppression patterns in regions 4a/b. The specific bursting pattern
is of subHopf/fold cycle-type. See also (Izhikevich, 2000).

Appendix C. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.clinph.2017.06.
245,
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