Homework assignment 3 – Applied Statistics 2018

Hand in your own solutions at the start of the lecture on Friday 11/5 (14.30)

For a project IT-students were asked to consider the interface of an energy monitor for households: is it possible to make a more user-friendly device?

The students designed a new interface with a simpler, more intuitive appearance, in order to make it more user-friendly. One of the aspects they wanted to investigate is whether, for the new interface, it is easier to retrieve last month’s electricity consumption: for the old interface the task completion times of 16 users were observed and for 16 other users the completion times for the new interface (after a trial period of 2 months) were observed.

The results of both samples are shown in the table below.

<table>
<thead>
<tr>
<th></th>
<th>Old</th>
<th>5.5</th>
<th>4.1</th>
<th>4.4</th>
<th>5.8</th>
<th>6.2</th>
<th>2.7</th>
<th>3.8</th>
<th>3.2</th>
<th>6.0</th>
<th>5.0</th>
<th>1.8</th>
<th>6.1</th>
<th>3.9</th>
<th>7.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>4.625</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>1.552</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>New</th>
<th>3.2</th>
<th>5.4</th>
<th>3.0</th>
<th>2.4</th>
<th>4.3</th>
<th>2.2</th>
<th>2.3</th>
<th>4.5</th>
<th>4.0</th>
<th>2.9</th>
<th>3.1</th>
<th>0.9</th>
<th>4.3</th>
<th>3.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>3.294</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>1.168</td>
<td></td>
</tr>
</tbody>
</table>

a. Should the observed values be interpreted as two independent samples or as paired samples? Motivate your choice,

b. Test the null hypothesis of equal variances cannot be rejected with \(\alpha = 5\% \). (Give 8 steps)

c. Can we state that the new design decreases the mean task completion time?

Conduct the test with \(\alpha = 5\% \).

Grading:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>total</th>
<th>SPSS below</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>+1 Bonus</td>
</tr>
</tbody>
</table>

SPSS-part (directions are for SPSS 14.0, other versions similar):

- Open a new SPSS-file and first go to the “variable view”-tab (left below): name the first variable “TCT”, set the number of decimals to 1 and Label as “Task Completion Time”. Name the second variable “Design” and go to Values: 1 = Old and 2 = New.
- Then return to the Data view and enter all 32 Task Completion Times in the first column and number the Design-variable 1 and 3 respectively.
- Go to Analyze \(\rightarrow \) Compare Means \(\rightarrow \) Independent-samples T-Test and choose “Task Completion Time” as Test variable and “Design” as Grouping variable (Define values 1 and 2). OK/OK
- Check whether the table “Group Statistics” reports the same means and standard deviations as given in the exercise.
- Then consult the table “Independent Samples test” and answer the following questions for the bonus:

1. “Levene’s test on the equality of variances”, an alternative for “our” \(F \)-test on \(H_0: \sigma_1^2 = \sigma_2^2 \) (Ch. 5), What conclusion can you draw from this p-value (which is given as “Sig.” or “observed significance” in the table), at a 5% significance level?

2. The first row of the table “Independent Samples test” shows a “Sig. 2-tailed” (= the 2-sided p-value): explain why this information leads to the same conclusion as in c., and take into account that SPSS only reports the p-value of the 2-sided test.
Solutions:

a. We have two groups of 16 + 16 different: 32 independent observations from 2 populations of task completion times.

b. The following F-test confirms the assumption of equal variances.

1. Probability model: the job completion times X_1, \ldots, X_{16} of the old design and Y_1, \ldots, Y_{16} of the new design are independent with $X_i \sim N(\mu_1, \sigma_X^2)$ and $Y_j \sim N(\mu_2, \sigma_Y^2)$.
2. Test $H_0: \sigma_X^2 = \sigma_Y^2$ (or $\sigma_X = \sigma_Y$) against $H_1: \sigma_X^2 \neq \sigma_Y^2$ with $\alpha = 5\%$.
3. Test statistic $F = \frac{s_X^2}{s_Y^2}$.
4. Distribution under H_0: $F \sim F_{16-1}^{16}$
5. Observed value: $F = \frac{s_X^2}{s_Y^2} = \frac{1.552^2}{1.168^2} \approx 1.766$
6. We have a two-sided test: reject H_0 if $F \leq c_1$ or $F \geq c_2$.

$P(F_{15}^{15} \geq c_2) = \frac{\alpha}{2} = 0.025$, so according to the F_{15}^{15}-distribution: $c_2 = 2.86$

$P(F_{15}^{15} \leq c_1) = P \left(F_{15}^{15} \geq \frac{1}{c_1} \right) = \frac{\alpha}{2} = 0.025$, so $\frac{1}{c_1} = 2.86$, or $c_1 \approx 0.35$

7. Since $F = 1.786$ does not lie in the Rejection Region: we cannot reject H_0.
8. At a significance level of 5% we cannot prove that the variances of the job completion times are different.

c. 2 samples t-test:

1. Probability model: the job completion times X_1, \ldots, X_{16} of the old design and Y_1, \ldots, Y_{16} of the new design are independent with $X_i \sim N(\mu_1, \sigma^2)$ and $Y_j \sim N(\mu_2, \sigma^2)$ (Note that we assume equal variances)
2. Test $H_0: \mu_1 = \mu_2$ against $H_1: \mu_1 > \mu_2$ with $\alpha = 0.05$:
3. Test statistic: $T = \frac{\bar{X} - \bar{Y} - 0}{\sqrt{S^2 \left(\frac{1}{16} + \frac{1}{16} \right)}}$, where $S^2 = \frac{1}{2} S_X^2 + \frac{1}{2} S_Y^2$ (since $n_1 = n_2 = 16$)
4. T is under H_0 t-distributed with $df = n_1 + n_2 - 2 = 16 + 16 - 2 = 30$
5. Observed: $t = \frac{4625 - 3294 - 0}{\sqrt{1.886 \cdot \frac{1}{8}}} \approx 2.74$, where

$s^2 = \frac{n_1 - 1}{n_1 + n_2 - 2} S_X^2 + \frac{n_2 - 1}{n_1 + n_2 - 2} S_Y^2 = \frac{1}{2} \cdot 1.552^2 + \frac{1}{2} \cdot 1.168^2 \approx 1.886$ ($s \approx 1.375$)
6. Right-sided test with $\alpha = 0.05$. Rejection Region: $t \geq c = 1.697$
 where $c = 1.697$ is taken from the t_{30}-table, such that $P(T_{30} \geq c) = \alpha = 5\%$
7. $t = 2.74$ falls in the RR ($2.74 > 1.697$), so we can reject H_0.
8. At significance level 5% it is proven that the new design requires on average a shorter task completion time than the old design.
SPSS-output:

Group Statistics

<table>
<thead>
<tr>
<th>Design</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task Completion Time</td>
<td>16</td>
<td>4,625</td>
<td>1,5520</td>
<td>0,3880</td>
</tr>
<tr>
<td>New</td>
<td>16</td>
<td>3,294</td>
<td>1,1682</td>
<td>0,2920</td>
</tr>
</tbody>
</table>

Independent Samples Test

<table>
<thead>
<tr>
<th></th>
<th>Levene's Test for Equality of Variances</th>
<th>t-test for Equality of Means</th>
<th>95% Confidence Interval of the Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Sig.</td>
<td>t</td>
</tr>
<tr>
<td>Task Completion Time</td>
<td>Equal variances assumed</td>
<td>2,357</td>
<td>.135</td>
</tr>
<tr>
<td></td>
<td>Equal variances not assumed</td>
<td>2,741</td>
<td>27,867</td>
</tr>
</tbody>
</table>

1. The p-value of Levene’s test on the equality of variances is $13.5\% > 5\% = \alpha$, so do not reject the null hypothesis of equal variances.
2. The 2-tailed p-value of the 2 independent samples t-test 0.010, so the upper-tailed test has a p-value $\frac{0.010}{2} = 0.005 (= 0.5\%) < \alpha = 5\%$, so reject the null hypothesis in favour of the alternative that the TCT of the new design is structurally smaller.