HWA 3 - Calculus I – 2018 hand in on Monday May 14, 14.30

1. Find the derivative of the following functions \(h(x) = \sqrt{3 - 2x^2} \)

2. Find the equations of all horizontal and vertical asymptotes of the function

\[
f(x) = \frac{12 - 10x + 2x^2}{x^2 - 3x}
\]

Motivate your answers by showing the appropriate computation/limit.

3. Consider the function \(g(x) = 20x^3 - 3x^5 \) on the domain \([-2, 3]\)
 a. Find the absolute maximum and the absolute minimum of \(g(x) \) (on its domain \([-2, 3]\))
 b. Find the inflection points of \(g \).
 c. Is the function \(g \) even or odd? (Consider the domain = \(\mathbb{R} \) for this question)

4. The function \(f \) is defined as \(f(x) = x^4e^x \).
 a. Find all critical values of \(f \).
 b. Give all local maxima and minima. Motivate each extreme value with the first derivative test.
 c. Give the second derivative of \(f \) and the interval(s), where \(f \) is concave downward.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>2</th>
<th>3a</th>
<th>3b</th>
<th>3c</th>
<th>4a</th>
<th>4b</th>
<th>4c</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

Solutions:
1. \[h'(x) = \frac{1}{2\sqrt{3} - 2x^2} \cdot -4x = -\frac{2x}{\sqrt{3} - 2x^2} \]

2. The equations of all horizontal and vertical asymptotes of \(f(x) = \frac{12-10x+2x^2}{x^2-3x} \) are:

\[
\frac{2(x^2-5x+6)}{x(x-3)} = \frac{2(x-3)(x-2)}{x(x-3)} \quad \text{Vertical asymptotes } x = a \text{ if } f(a) \text{ has the form } \frac{c}{0}, \text{ where } c \neq 0:
\]

At \(x = 0 \) \(f(x) \) has the form \(\frac{12}{0} \Rightarrow \text{VA: } x = 0 \), but at \(x = 3 \) the form \(0 \Rightarrow \text{no V.A. at } x = 3. \)

Note that \(f \) has at \(x = 3 \) a removable discontinuity: \[\lim_{x \to 3} f(x) = \lim_{x \to 3} \frac{2(x-3)(x-2)}{x(x-3)} = \frac{2}{3} \]

Horizontal asymptotes:

\[
\lim_{x \to \infty} f(x) = \lim_{x \to \pm \infty} \frac{12-10x+2x^2}{x^2-3x} = \lim_{x \to \infty} \frac{12}{x^2} \frac{1-\frac{3}{x}}{1-\frac{3}{x}} = 0 = 2
\]

\[
\lim_{x \to -\infty} f(x) = 2 \text{ (similarly) } \Rightarrow \text{HA: } y = 2
\]

3. \(g(x) = 20x^3 - 3x^5 \) has derivative

\[g'(x) = 60x^2 - 15x^4 = 15x^2(4 - x^2) = 15x^2(x - 2)(x + 2) \]

Using the closed interval method for this continuous function on \([-2, 3]\) we find:

1. \(g'(x) = 0 \Leftrightarrow \text{critical values } x = 0 \text{ or } x = 2 \text{ or } x = -2: \) all within \([-2, 3]\). See table for \(f(x) \).

2. We add the function values \(f(x) \) at the boundaries \(x = -2 \text{ and } x = 3 \) in the following table:

<table>
<thead>
<tr>
<th>(x)</th>
<th>-2</th>
<th>0</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>-64</td>
<td>0</td>
<td>64</td>
<td>-189</td>
</tr>
</tbody>
</table>

3. The largest of these values is the **absolute maximum** \(f(2) = 64 \) and the smallest is the **absolute minimum** \(f(3) = -189 \)

b. \(g''(x) = 120x - 60x^3 = 60x(2 - x^2) = 60x(\sqrt{2} - x)(\sqrt{2} + x) = 0 \)

\Rightarrow x = 0 \text{ or } x = \sqrt{2} \text{ or } x = -\sqrt{2} . \quad \text{Since } x = 0 \text{ and } x = \pm\sqrt{2} \approx \pm1.41 \text{ are all within the interval we have a sign change of } f'' \text{ at all of these values, we have three inflection points: } (0,0), (\sqrt{2},f(\sqrt{2})), (-\sqrt{2},f(-\sqrt{2})).

\(f'(x) = 20x^3 - 3x^5 \Rightarrow g(-x) = -20x^3 + 3x^5 = -g(x): \)

\(g(x) \) is an **odd function**. (the graph can be reflected about the origin.)

4. \(f(x) = x^4e^x \Rightarrow f'(x) = 4x^3e^x + x^4e^x = (x^4 + 4x^3)e^x = x^3(x + 4)e^x = 0 \),

if \(x = 0 \) or \(x = -4 \Rightarrow 0 \text{ and } -4 \text{ are the critical values} \)

b. Since the sign of \(f'(x) \) is changing from positive to negative \(f \) has a **local maximum**

\[f(-4) = 256e^{-4} \approx 4.69. \]

At \(x = 0 \): the sign of \(f'(x) \) is changing from negative to positive, so \(f \) has a **local minimum** \(f(0) = 0 \)

c. \(f'(x) = (x^4 + 4x^3)e^x \Rightarrow f''(x) = (4x^3 + 12x^2)e^x + (x^4 + 4x^3)e^x = (x^4 + 8x^3 + 12x^2)e^x = x^2(x + 2)(x + 6)e^x \)
\[f''(x) = 0 \text{ if } \iff x = 0 \text{ or } x = -2 \text{ or } x = -6 \]

\[
\begin{array}{cccccccccc}
\text{sign scheme } f''(x) & + & + & + & 0 & - & - & - & 0 & + & + & 0 & + & + & + \\
\hline
-6 & & & & & & & & & & -2 & & & & & & 0 \\
\end{array}
\]

\[f''(x) < 0 \text{ if } -6 < x < -2 \text{ the function is concave downward on } (-6, -2) \]

Some notes on the last exercise (in view of a full investigation and curve sketching):

- In exercise a., to proof that a critical point \(c \) where \(f'(c) \) is a maximum or minimum you have to check whether the sign of \(f'(x) \) is changing at \(x = c \): if \(f' \) is changing from + to -, it is a local maximum, from – to + a local minimum. Similarly in c. to show that a point where \(f''(c) \) is an IP, \(f''(x) \) must change its sign at \(x = c \). e.g. if \(f(x) = x^4 \), then \(f''(x) = 12x^2 = 0 \) if \(x = 0 \), but \((0, 0)\) is not an IP (check the graph!), as \(f''(x) \geq 0 \) near \(x = 0 \)
- If you would use the second derivative test in b. you will find the following, using the second derivative found in c: at \(x = -4 \): \(f''(-4) = 16 \cdot (-2) \cdot (+2)e^{-2} < 0 \Rightarrow f \) is concave downward at \(x = -4 \), so \(f(-4) = 256e^{-4} \approx 4.69 \) is a local maximum. At \(x = 0 \): \(f''(0) = 0 \), but near \(x = 0 \) we have \(f''(x) > 0 \Rightarrow f(0) = 0 \) is a local minimum
- Since \(f''(x) \) has **no sign change** at \(x = 0 \) (“double root”), \((0, 0)\) is not an Inflection Point, IP’s are \((-6, f(-6))\) and \((-2, f(-2))\), where \(f(-6) \approx 3.21 \) and \(f(-2) \approx 2.17 \)
- The behaviour of the function at infinity and negative infinity:
 \[
 \lim_{x \to \infty} x^4e^x = +\infty \text{ (both } x^4 \text{ and } e^x \text{ approach } \infty) \text{ and} \\
 \lim_{x \to -\infty} x^4e^x = \lim_{x \to -\infty} \frac{x^4}{e^{-x}} = 0 \text{ since after substituting } y = -x \text{ we find:} \\
 \lim_{x \to -\infty} \frac{x^4}{e^{-x}} = \lim_{y \to \infty} \frac{y^4}{e^{y}} = 0 \text{ (see exercise 3.14 applying L’Hopital’s rule)}
 \]
- Since \(f(x) \geq 0 \) and the local minimum \(f(0) = 0 \), this is an absolute minimum: There is no absolute maximum since \(\lim_{x \to \infty} x^4e^x = \infty \)