Noise Based Transmitted Reference Modulation for Wireless Sensor Networks

Mahdin Mahboob1, Arjan Meijerink1, Sarwar Morshed2, Geert Heijenk2, Mark Bentum1

University of Twente
1Telecommunication Engineering Group,
2Design and Analysis of Communication Systems Group,
P.O. Box 217, 7500 AE, Enschede, The Netherlands
Email: m.mahboob@utwente.nl

1) Wireless Sensor Networks
- Battlefield
- Temperature control
- Agriculture
- Healthcare
 → Low power consumption
 → Harsh EM environments (with multipath fading and interference)

2) Spreading Techniques
- Immunity to interference
- Robustness to multipath fading
- Coexistence with other devices in the same spectrum space
- Example: ultra-wideband (UWB)

3) Transmitted Reference Modulation
- Both modulated and unmodulated signals sent
- Distinguished at the receiver by time offset
- Demodulation by means of self-correlation
- Multiple access by using different offsets
- Instead of time offset, frequency offset may be used (easier implementation at chip level)
 - No Channel state information required
 - Faster signal acquisition
 - No stable oscillators required → low complexity
 - Inherent multiple access capability
 - Power penalty at bit level

 → Short-range, low-duty cycle applications → WSNs

4) WALNUT project

Wireless Ad-hoc Links using robust Noise-based Ultra-wideband Transmission

Cross-Disciplinary work in three fields:
- Physical Layer
 - Suitable noise-like carriers
 - Suitable modulation techniques and channel codes
 - Receiver structure design
- Integrated Circuit Design
 - Sensitive low-power receiver design
 - High efficiency power transmitters
- Communication Protocols
 - Medium access control
 - Power control
 - Packet scheduling

Ultimate aim: realize a robust noise-based radio link using low-power ICs combined with relevant MAC protocol

http://www.utwente.nl/ewi/te/projects/SRR/walnut

THE UNIVERSITY OF TWENTE.

The WALNUT project is funded by the Dutch Technology Foundation STW through the Open Technology program