EFFECTIVE BOUNDARY CONDITION FOR WAVE REFLECTION OVER SLOWLY VARYING BATHYMETRY

Wenny Kristina
E. Van Groesen
Onno Bokhove
CONTENTS

1. Motivation and Introduction
2. Linear Shallow Water Equations
3. WKB Approximation
4. Reflection WKB Approximation
5. Effective Boundary Conditions over Slowly Varying Bathymetry
6. Conclusions and Future Work
MOTIVATION

Tsunamis (tsu = harbour, nami = wave) are long water waves generated by:
- offshore earthquakes,
- explosive volcanism near the surface of the ocean,
- submarine slides, or
- a meteorite that hit the ocean.
MOTIVATION

■ In the open ocean: long wavelength (hundreds of kilometres) vs its height (± 0.5m)

■ Its height increase in the last 10-20m depth of water before the shore
MOTIVATION

Present day simulation tools:

- Cannot calculate the waveheight near the shore accurately enough:
 - The interaction of the incoming waves with reflected waves from the coast.
 - Computing the details of run-up and run-down of waves on the shore is computationally expensive.

- Use a fixed wall or transparent boundary condition at a zone before the shoreline to simplify the problem (TUNAMI N2, FUNWAVE, GEOWAVE, etc).
Aim:
Design boundary conditions that are able to calculate more accurate wave interactions near the shore without increasing the computational cost.
Basic idea:
1. At $x=B$, information of the incoming wave is measured in time (denote by $d(t)$).
3. Select the information that accounts for the reflected waves influx I into the sea at $x=B$.
INTRODUCTION

At time t, the resulting reflected wave will depend on the incoming wave for all previous time, i.e:

$$I = M(d(t))$$

depends on $d(\tau)$ for all $\tau < t$.

UNIVERSITY OF TWENTE.
INTRODUCTION

The challenges in this schematic overview of mapping the incoming waves to the outgoing reflected waves are:

1. Defining the measurement of the property of incoming waves operator $d(t)$
 - Linear Shallow Water Equations
2. Making a theoretical model for the wave interaction at the shore $M(d)$.
 - Over slowly varying bathymetry
3. Including the reflected wave properties $I=M(d)$ in an influx boundary condition.
 - Linear Shallow Water Equations
4. Implementing the above analytic results numerically.
 - Two-dimensional Finite Element Method, in one-dimensional setting.
LINEAR SHALLOW WATER EQUATIONS

\[
\begin{align*}
\partial_t \eta &= -\partial_x [h \partial_x \phi] \quad (1a) \\
\partial_t \phi &= -g \eta \quad (1b)
\end{align*}
\]

with \(\eta \) represents the wave elevation, and \(\phi \) represents the velocity potential (the velocity is given by \(u = \nabla \phi \)).
WKB APPROXIMATION

For slowly varying velocity $c(\varepsilon x)$, the WKB approximation for right traveling waves:

$$\eta_0(x,t) = \frac{A}{\sqrt{c(\varepsilon x)}} F(\theta(x,t))$$

where θ satisfies the eiconal equation

$$\left(\partial_t \theta\right)^2 = c^2 \left(\partial_x \theta\right)^2.$$
REFLECTION WKB APPROXIMATION

\[\eta(x, t) = \eta_0 + \eta_1 \]

\[\rightarrow \text{use WKB approximation} \]

\[\rightarrow \text{ignore higher order term} \]
REFLECTION WKB APPROXIMATION

Given the initial condition $\eta(x,0) = F(x)$ then $\eta_0(x,0) = \sqrt{c(x)} F(x) = \bar{F}(x)$.

Then we have the solutions:

$$\eta_0 = \bar{F}(y-t) \quad (3)$$

$$\eta_1 = \int_y^{y+t} \bar{F}(2\beta - (y+t))B(\beta)d\beta \quad (4)$$

For $\eta_0 = \sqrt{c}\eta_0$ and $\eta_1 = \sqrt{c}\eta_1$

and introducing time independent variable $y = y(x)$ such that $\partial_y = c\partial_x \Rightarrow y = \int_0^x \frac{d\zeta}{c(\zeta)}$
COMPARISON BETWEEN REFLECTION WKB APPROXIMATION AND NUMERICAL SOLUTIONS

Bathymetry profile:

\[h(x) = \frac{h_0 - h_1}{2} \cos \left(\frac{\pi}{2w} \left(x - m + w \right) \right) + \frac{h_0 + h_1}{2}, \]

- \(h_0 = 1000m \) is the depth before the slowly varying bathymetry
- \(h_1 = 100m \) is the depth after the slowly varying bathymetry
- \(m \) is the middle of the slope
- \(w \) is the half width of the slope
COMPARISON BETWEEN REFLECTION WKB APPROXIMATION AND NUMERICAL SOLUTIONS

$\varepsilon = 1/10$

Error average: 0.0032 m

- Reflection WKB approximation
- Numerical solution of linear SWE
COMPARISON BETWEEN REFLECTION WKB APPROXIMATION AND NUMERICAL SOLUTIONS

\[\varepsilon = \frac{1}{20} \]

Error average: 0.0019 m

- Reflection WKB approximation
- Numerical solution of linear SWE
COMPARISON BETWEEN REFLECTION WKB APPROXIMATION AND NUMERICAL SOLUTIONS

\[\varepsilon = 1/30 \]

Error average: 0.0013 m

- Reflection WKB approximation
- Numerical solution of linear SWE
COMPARISON BETWEEN REFLECTION WKB APPROXIMATION AND NUMERICAL SOLUTIONS
EFFECTIVE BOUNDARY CONDITIONS OVER SLOWLY VARYING BATHYMETRY

\[d(t) = F\left(\frac{B}{c_B} + t\right) \]

\[\eta(x,0) = F(x) \]

Influx reflected waves I:

\[\partial_t \phi + c_B \partial_x \phi = -2g \eta_1(B,t) \]

Model M: Reflection WKB approximation
SIMULATIONS
B=20km, L=100km

CPU time for numerical calculation in the whole domain: 120s
CPU time to calculate the analytical solution of the reflection wave: 8.60s
CPU time for calculation with EBC: 82s

- simulation with EBC
- simulation in the whole domain
BATHYMETRY OF LAMPUNG, SOUTH OF SUMATRA

Bathymetry of Lampung

Sumatra

JAVA

Ridge

longitude[deg]

latitude[deg]

depth [m]
BATHYMETRY OF PANGANDARAN, SOUTH OF JAVA
CONCLUSIONS

- The Effective Boundary Conditions (EBCs) over slowly varying bathymetry have been derived, implemented, and compared with the numerical solutions.
 - The comparisons show there is some error that is expected because we used second order WKB approximation.
 - When the slope is steeper, the error is larger.

- By using this EBC, the computational time can be reduced.

- The Reflection WKB approximation also improves the WKB approximation for the wave that propagates over the slowly varying bathymetry.
FUTURE WORK

- Deriving EBC when there is run-up an run-down on the shore (adding friction, etc.).

- Improving the propagation wave model, e.g. using Variational Boussinesq Model, non linear model.

- Go to two dimensional case.
THANK YOU