An Immersed Boundary Method for Computing Anisotropic Permeability of Structured Porous Media

David Lopez Penha
with
Bernard Geurts, Steffen Stolz* and Markus Nordlund*

*Philip Morris Products S.A., PMI Research & Development, Neuchâtel, Switzerland

PhD-TW Colloquium
June 11, 2009
1. Averaged transport in porous media
2. Numerical flow predictions
3. Predicting permeability of structured porous media
4. Concluding remarks & outlook
Outline

1. Averaged transport in porous media
2. Numerical flow predictions
3. Predicting permeability of structured porous media
4. Concluding remarks & outlook
source: http://gubbins.ncsu.edu/research.html

- Amorphous nano-porous material (e.g. porous glass)
Porous Media

... the household sponge ...

An Immersed Boundary Method for Computing Anisotropic Permeability of Structured Porous Media
Transport in Porous Media

Microscopic approach:

- Modeling flow at pore level
- Complex description of solid surfaces → body-fitted grid not available
- Real system measurements are impossible

Instead: coarsening of flow description (macroscopic approach)

- Technique: average variables over representative volume
- Avoid need for exact interphase boundaries
- Computationally much less demanding
Transport in Porous Media

Microscopic approach:

- Modeling flow at pore level
- Complex description of solid surfaces → body-fitted grid not available
- Real system measurements are impossible

Instead: coarsening of flow description (macroscopic approach)

- Technique: average variables over representative volume
- Avoid need for exact interphase boundaries
- Computationally much less demanding
Microscopic Approach to Flow in Porous Media

Macroscopic approach: volume-averaged Navier-Stokes equations
Microscopic Approach to Flow in Porous Media

Macroscopic approach: volume-averaged Navier-Stokes equations
Transport Coefficients in Macroscopic Approach

Volume averaging of fluid variables

- Transport coefficient: generalized Darcy’s law (1856)

\[\langle u_f \rangle = - \frac{k}{\mu_f} \cdot \nabla \langle p_f \rangle \]
\[\text{ (k: permeability tensor) } \]
Volume averaging of fluid variables

- Transport coefficient: generalized Darcy’s law (1856)

\[
\langle \mathbf{u}_f \rangle = -\frac{k}{\mu_f} \cdot \nabla \langle p_f \rangle \quad (k: \text{permeability tensor})
\]
Closure for the Permeability

Generalized Darcy’s law:

\[\langle u_f \rangle = -\frac{k}{\mu_f} \cdot \nabla \langle p_f \rangle \]

(k: permeability tensor)

- \textbf{k}: measure of fluid resistance
- Dependent on geometric features solid matrix
- Poses closing problem \(\longrightarrow \) predict numerically on representative volume
Closure for the Permeability

- **Generalized Darcy’s law:**

 $$\langle u_f \rangle = -\frac{k}{\mu_f} \cdot \nabla \langle p_f \rangle \quad (k: \text{permeability tensor})$$

- k: measure of fluid resistance
- Dependent on geometric features solid matrix
- Poses closing problem \rightarrow predict numerically on representative volume
Closure for the Permeability

◊ Generalized Darcy’s law:

\[\langle u_f \rangle = - \frac{k}{\mu_f} \cdot \nabla \langle p_f \rangle \quad (k: \text{permeability tensor}) \]

◊ \(k\): measure of fluid resistance
◊ Dependent on geometric features solid matrix
◊ Poses closing problem \(\rightarrow\) predict numerically on representative volume
Outline

1. Averaged transport in porous media
2. Numerical flow predictions
3. Predicting permeability of structured porous media
4. Concluding remarks & outlook
Immersed Boundary Technique

Navier-Stokes equations:

\[\nabla \cdot \mathbf{u} = 0 \]
\[\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{\text{Re}} \nabla^2 \mathbf{u} + \mathbf{f} \]

- \(\mathbf{f} \): forcing function \(\rightarrow \) no-slip condition
- Volume penalization:
 \[\mathbf{f} = -\frac{1}{\epsilon} \mathcal{H}(\mathbf{u} - \mathbf{u}_s), \quad \epsilon \ll 1 \]
 - \(\mathcal{H} \): mask function \(\rightarrow \mathcal{H} = 1 \) inside solid, \(\mathcal{H} = 0 \) elsewhere
Immersed Boundary Technique

Navier-Stokes equations:

\[\nabla \cdot \mathbf{u} = 0 \]

\[\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{\text{Re}} \nabla^2 \mathbf{u} + \mathbf{f} \]

\[\diamond \mathbf{f}: \text{forcing function} \rightarrow \text{no-slip condition} \]

\[\diamond \text{Volume penalization:} \]

\[\mathbf{f} = -\frac{1}{\epsilon} H(\mathbf{u} - \mathbf{u}_s), \quad \epsilon \ll 1 \]

\[\diamond H: \text{mask function} \rightarrow H = 1 \text{ inside solid, } H = 0 \text{ elsewhere} \]
Immersed Boundary Technique

Navier-Stokes equations:

\[\nabla \cdot \mathbf{u} = 0 \]

\[\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u} + \mathbf{f} \]

◇ **f**: forcing function \(\rightarrow \) no-slip condition

◇ Volume penalization:

\[\mathbf{f} = -\frac{1}{\varepsilon} \mathbf{H}(\mathbf{u} - \mathbf{u}_s), \quad \varepsilon \ll 1 \]

◇ **H**: mask function \(\rightarrow \mathbf{H} = 1 \) inside solid, \(\mathbf{H} = 0 \) elsewhere
Structured Porous Medium

- **Representative volume:** spatially periodic array of staggered squares
- **Geometry:** Kuwahara et al., Int. J. Heat Mass Transfer 44, (2001)
Structured Porous Medium

◇ Velocity vector field at Re = 1
Structured Porous Medium

 veloc vector field at Re = 100
An Immersed Boundary Method for Computing Anisotropic Permeability of Structured Porous Media
Predicting Permeability in One Direction

- Representative volume
- Darcy's law: flow rate \propto hydraulic jump
 \[
 \frac{Q}{A} = -\frac{k \Delta p}{\mu L}
 \]
- k: component of permeability tensor k
Predicting Permeability in One Direction

- Representative volume
- Darcy’s law: flow rate \propto hydraulic jump

$$\frac{Q}{A} = -\frac{k}{\mu} \frac{\Delta p}{L}$$

- k: component of permeability tensor \mathbf{k}
Spatially Periodic Array of Cylinders

- 2D geometry considered by Edwards et al. (1990)
- Solution technique: FEM & body-fitted grid
Numerical Prediction of Permeability

- \(k \) (x-direction) vs. \(Re \)
- \(k \) (y-direction) vs. \(Re \)

- \(\{x, y\}\)-permeability vs. Reynolds number (various solidity)

An Immersed Boundary Method for Computing Anisotropic Permeability of Structured Porous Media
Outline

1. Averaged transport in porous media
2. Numerical flow predictions
3. Predicting permeability of structured porous media
4. Concluding remarks & outlook
Conclusions & Outlook

Conclusions:

◊ Developed IB method for flow in "structured" porous media
◊ Applied to Kuwahara geometry - verified correct capturing of flow
◊ Prediction of permeability through Darcy's law

Outlook:

◊ Perform full parameter study of model porous media
Conclusions & Outlook

Conclusions:

◊ Developed IB method for flow in "structured" porous media
◊ Applied to Kuwahara geometry - verified correct capturing of flow
◊ Prediction of permeability through Darcy's law

Outlook:

◊ Perform full parameter study of model porous media