Mathematics C1 Cayley: Educational Targets

<table>
<thead>
<tr>
<th>Module</th>
<th>block 2A, year 2013-2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>25-03-2013</td>
</tr>
</tbody>
</table>

The student is able to:

1. **work with systems of linear equations, vectors, matrices, linear transformations and explain the connections between these concepts**
 - determine an echelon form and the reduced echelon form of a matrix
 - write a linear system in the form \(Ax = b \)
 - determine if a linear system is (in)consistent
 - determine the solution set of a linear system
 - perform operations with vectors and matrices
 - (addition, scalar multiplication, multiplication, transpose, linear combinations
 - apply properties of operations with vectors and matrices
 - interrelate the solution sets of \(Ax = b \) and \(Ax = 0 \)
 - examine the linear (in)dependency of a set of vectors
 - explain the concept of linear transformation (domain, codomain, images)
 - calculate the standard matrix of a linear transformation
 - examine properties of linear transformations (one-to-one, onto)
 - define the concept of inverse of a matrix
 - apply properties of an invertible matrix
 - calculate the inverse of a regular matrix
 - characterize an invertible matrix in terms of its echelon form, its columns (rows), linear systems

2. **work with subspaces of \(\mathbb{R}^n \) and determinants and connect them with the previous concepts**
 - explain the concepts of subspace and basis
 - determine (a basis for) a subspace (e.g., column space, null space of a matrix)
 - compute coordinate vectors w.r.t. a basis
 - determine the dimension of a subspace
 - determine the rank of a matrix
 - apply the Rank Theorem
 - explain the concept of determinant of a matrix
 - compute the determinant of a matrix using cofactor expansion
 - apply properties of determinants
 - (w.r.t. row- and column operations and multiplication)
 - characterize an invertible matrix in terms of its determinant
 - calculate the area of a parallelogram or volume of a parallelepiped using determinants
 - explain the effect of a linear transformation on areas and volumes