Examination: Mathematical Programming I (158025)
June 30, 2003, 13.30-16.30

Ex.1 Prove the following statements.

(a) Let \(A \in \mathbb{R}^{n \times m} \) be a given matrix \((m \leq n)\). Then \(A^T A \) is positive definite if and only if \(A \) has full rank \((m)\).

(b) For a symmetric \((n \times n)\)-matrix \(A \) the following holds: \(A \) is positive semidefinite if and only if all eigenvalues \(\lambda_j \) of \(A \) are non-negative \((\lambda_j \geq 0, \ j = 1, \ldots, n)\).

Ex.2 Consider the primal-dual pair of linear problems:

\[
\begin{align*}
(P) & \quad \max_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^T \mathbf{x} \quad \text{s.t.} \quad \mathbf{Ax} \leq \mathbf{b} \\
(D) & \quad \min_{\mathbf{y} \in \mathbb{R}^m} \mathbf{b}^T \mathbf{y} \quad \text{s.t.} \quad \mathbf{A}^T \mathbf{y} = \mathbf{c}, \quad \mathbf{y} \geq 0
\end{align*}
\]

Show the following:

(a) There exists a feasible point for \(D \) (i.e. a point satisfying \(\mathbf{A}^T \mathbf{y} = \mathbf{c}, \ \mathbf{y} \geq \mathbf{0} \)) if and only if \(\mathbf{c}^T \mathbf{x} \leq 0 \) is implied by \(\mathbf{Ax} \leq \mathbf{0} \).

(b) Let the feasible set \(\mathcal{F}_P = \{ \mathbf{x} \mid \mathbf{Ax} \leq \mathbf{b} \} \) be non-empty. Show:

The value \(f(\mathbf{x}) = \mathbf{c}^T \mathbf{x} \) is bounded from above on \(\mathcal{F}_P \) if and only if \(\mathbf{c}^T \mathbf{x} \leq 0 \) is implied by \(\mathbf{Ax} \leq \mathbf{0} \).

Ex. 3

(a) Show that \(f(\mathbf{x}) = \|\mathbf{x}\| \) (\(\|\cdot\| \) any norm on \(\mathbb{R}^n \)) defines a convex function \(f : \mathbb{R}^n \to \mathbb{R} \).

(b) Let \(g : \mathbb{R}^n \to I, \ I \subset \mathbb{R} \) be convex and \(f : I \to \mathbb{R} \) be convex and non-decreasing. Show that the composition \(f \circ g(\mathbf{x}) = f(g(\mathbf{x})) \) of the functions \(f \) and \(g \) is convex.

(c) Show: The function \(f(\mathbf{x}) = e^{\|\mathbf{x}\|} \) is convex on \(\mathbb{R}^n \) (for any norm \(\|\mathbf{x}\| \) on \(\mathbb{R}^n \)).
Ex. 4

(a) Let \(f : (a, b) \rightarrow \mathbb{R} \) be a convex function. Show for all \(x \in (a, b) \):
\[
\partial f(x) = \{ d \in \mathbb{R} \mid f'_-(x) \leq d \leq f'_+(x) \}.
\]

(b) Determine the subdifferentials for the function \(f(x) = |x^2 - 1| \) at the points \(x_0 = 0 \), \(x_1 = 1 \), and \(x_2 = 4 \). (Is the function \(f \) convex?)

Ex. 5 Given the function \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \),
\[f(x) = x_1^3 + e^{3x_2} - 3x_1e^{x_2}. \]

(a) Find the critical points (i.e. points satisfying \(\nabla f(x) = 0^T, x = (x_1, x_2) \)) of the function \(f \) and determine the local minimizers.

(b) Does there exist a global minimizer or a global maximizer of \(f \) on \(\mathbb{R}^n \)?

(c) Suppose we apply the steepest descent method to \(f \). What can you say about the (local) convergence properties. (Quadratic or linear convergent? Give an estimate for the convergence factor.)

Points: 36+4 = 40

Ex. 1 a : 3 pt.
 b : 4 pt.
Ex. 2 a : 3 pt.
 b : 4 pt.
Ex. 3 a : 2 pt.
 b : 4 pt.
 c : 1 pt.
Ex. 4 a : 5 pt.
 b : 2 pt.
Ex. 5 a : 4 pt.
 b : 2 pt.
 c : 2 pt.

The script 'Mathematical Programming I' may be used during the examination. Good luck!