Churnalist: Fictional Headline Generation
for Context-appropriate Flavor Text

Judith van Stegeren
Human Media Interaction
University of Twente
Enschede, The Netherlands
j-e.vanstegeren @utwente.nl

Abstract

We present Churnalist, a headline generator for creating
contextually-appropriate fictional headlines that can be used
as ‘flavor text’ in games. Churnalist creates new headlines
from existing headlines with text modification. It extracts
seed words from free text input, queries a knowledge base for
related words and uses these words in the new headlines. Chur-
nalist’s knowledge base consists of a dataset of pre-trained
word embeddings, thus requiring no linguistic expertise or
hand-coded models from the user.

Introduction

The field of natural language generation (NLG) investigates
how texts can be created automatically. NLG systems have
been used to transform data, such as weather data, football
match statistics and intensive care data, into texts for a spe-
cific audience. NLG is also used for generating fictional or
creative text, such as poetry (Gongalo Oliveira 2012), lyrics
(Bay, Bodily, and Ventura 2017), advertising slogans (Gatti
et al. 2015), and character dialogue in games (Lukin, Ryan,
and Walker 2014; Schliinder and Klabunde 2013). It is in
the latter type of applications that NLG has similar research
goals as computational creativity, i.e. supporting or even
completely replacing a human in the execution of a creative
task.

In this paper, we present Churnalist, an interactive system
for generating newspaper headlines for a given context. Our
system is meant for generating fictional headlines that can be
used in games. Most headline generators take a newspaper
article as input and summarize it in one sentence. In contrast
to these systems, Churnalist accepts any type of text as in-
put and generates headlines based on nouns extracted from
the input text. By reusing nouns from the input text in the
generated headlines, we aim to make the headlines context-
appropriate, by which we mean that readers will believe that
the headlines are related to the input text. We want to exploit
the human tendency to see connections between texts (input
text and headlines) where there are none.

There are various games that use fictional news (in the
form of headlines or newspaper articles) to provide narrative
context to the player. For example, in city simulation game
SimCity 2000 (Maxis 1996), the player has access to news-
paper articles with information about important city issues,
disasters and new technologies. Similarly, Cities Skylines

Mariét Theune
Human Media Interaction
University of Twente
Enschede, The Netherlands
m.theune @utwente.nl

(Colossal Order 2017) features a fictional social media web-
site called ‘Chirpy’, where virtual citizens of the player’s city
express their (dis)satisfaction with the player’s performance
as mayor and city planner. In Deus Ex: Human Revolution
(Eidos Montral 2011), the player can find ebooks and newspa-
pers that provide background information on the social unrest
that is driving the game’s main storyline. Idle game Cookie
Clicker (Thiennot 2013) has a news ticker with randomly
generated headlines reflecting the player’s game progress.

The fictional newspaper articles and headlines can be seen
as examples of flavor text, i.e. text that is not essential to
the main game narrative, but creates a feeling of immersion
for the player. This is especially important for role-playing
games and simulation games, as it gives players the impres-
sion that the virtual world they are interacting with is a living
and breathing world.

Writing flavor text is a time-consuming task for game writ-
ers. Text generation can be a solution to this problem. Most
games that incorporate text generation use simple, manu-
ally created templates or canned text. More complex NLG
techniques rely on linguistic models, which often take con-
siderable effort to create and require linguistic expertise. Sta-
tistical linguistic models can be created automatically from
a dataset of texts. However, generators with underlying sta-
tistical models offer less fine-grained control over the output.
Canned text and simple templates offer a balance between
control over the output and ease of use, but have the disad-
vantage that players will figure out the underlying templates
after playing the same game for a while, or after replaying the
game (Backus 2017). We think that NLG techniques other
than canned text and simple templates are worth investigating
in the context of game development, especially data-driven
approaches to text generation, as these can overcome the
need for expensive, handcrafted language models. We pro-
pose a system that can generate fictional headlines in order
to support game writers in the task of writing flavor text.

In the next section, we discuss related work. Then, we
present Churnalist and describe the system goal, the archi-
tecture and the generation steps in detail, together with an
example. Finally, we discuss our results and describe some
ideas for future work.

Related work

In this section, we discuss work related to headline genera-
tion, text generation for games and generative systems that
take context into account.

Headline generation

Headline generation is often seen as a document summa-
rization task, where headline generators take a full article
text as input and return a headline that describes the most
salient theme or the main event of the text. The literature
distinguishes between extractive summarization, e.g. (Jing
2000), and abstractive summarization approaches. Contrary
to extractive systems, the output of an abstractive system
does not have to correspond to a sentence from the input text.
Abstractive headline generation systems may be rule-based
(Dorr, Zajic, and Schwartz 2003), statistics-based (Banko,
Mittal, and Witbrock 2000) or based on machine learning
(Colmenares et al. 2015; Shen et al. 2017), with the latter
winning in popularity in recent years.

Headylines (Gatti et al. 2016) is an example of a headline
generation system that focuses on the creative side of writing
headlines. It can be used to support editors in their task of
writing catchy news headlines. Given a newspaper article
text as input, it extracts the most important words from the
text and uses these as seed words for generating a large set
of variations on well-known lines, such as movie names and
song lyrics. This research is a good example of combining
NLG with techniques from computational creativity.

Text generation for games

Text generation for games is a form of procedural content gen-
eration (PCG). Procedural content generation, which refers
to the creation of content automatically through algorithmic
means, is a relatively new addition to the field of artificial
intelligence. PCG for games studies the algorithmic creation
of game contents, defined by Yannakakis and Togelius (2011)
as all aspects of a game that affect gameplay but are not non-
player character behavior or the game engine itself, such as
maps, levels, dialogues, quests, music, objects and charac-
ters. Text generation techniques can be used for generating
dialogue, stories, quests and flavor text for games. Although
including generated game text in video games is winning in
popularity, these texts are often generated with simple NLG
techniques, such as canned text and simple templates.

On the other hand, within the natural language genera-
tion field, there are various publications that list game text
as a possible application (Schliinder and Klabunde 2013;
Strong et al. 2007; Lukin, Ryan, and Walker 2014). How-
ever, there are few cases where the implemented system is
actively used in a games context. One example is Caves of
Qud (Freehold Games 2018), which combines techniques
from PCG and NLG to create a unique game world for ev-
ery play-through. The developers of Caves of Qud used a
hand-written knowledge base for their text generator, which
links in-game themes to a set of words and phrases (see next
section). In our research, we use a knowledge base for a
similar purpose: to link seed words from the input text to a
set of related words. Instead of creating it manually, we used
word embeddings as the basis for our knowledge base.

Generative systems and context

For Churnalist, we were inspired by how other generative
systems create text for a given context. Context is a slippery
notion. Within PCG for games, generated artifacts are judged
together with the rest of the assets of the game for which
they were generated. In the case of Churnalist, context means
the input text and, more generally, the game from which the
input text is taken and for which the headlines are generated.

In slogan generation it is also important for the generated
texts to fit a given context or domain. In BRAINSUP (Ozbal,
Pighin, and Strapparava 2013), the generated slogans must fit
a domain for which the user manually supplies keywords as
input to the system. In BISLON (Repar et al. 2018), keywords
are automatically extracted from two sets of documents rep-
resenting two domains that the generated slogans must fit.
The pool of extracted keywords is expanded using FastText
embeddings (Bojanowski et al. 2017). The keywords are
then used to fill the slots in templates (‘slogan skeletons’)
derived from a corpus of slogans. The BISLON approach to
extracting and expanding the set of keywords is very similar
to that of Churnalist, as we will see in the following sections.
One way in which Churnalist differs from both BRAINSUP
and BISLON is that those systems derive syntactic patterns
or templates from a corpus and then fill their slots, whereas
Churnalist takes the original texts from a corpus and applies
word substitution to them. In that respect, Churnalist is more
similar to the transformation-based approach to lyrics gener-
ation proposed by Bay, Bodily and Ventura (2017).

Another system related to Churnalist is O Poeta Artificial
2.0 (Gongalo Oliveira 2017), a bot tweeting poems that are
generated for trending hashtags on Twitter. It uses hashtags
as topical seed words to generate poems that fit the hashtag.
The bot is based on PoeTryMe (Gongalo Oliveira 2012), a
poem generation framework for Portuguese, which uses ex-
ternal data sources to enrich its output, such as a database
of Portuguese poems, a semantic graph and lexical datasets.
Churnalist has multiple things in common with O Poeta Artifi-
cial: both generate text for a specific context, work with seed
words and external semantic resources, and need a method to
deal with out-of-vocabulary words in the input.

Caves of Qud’s text generation (Grinblat and Bucklew
2017) influenced our design for Churnalist as well. The game
generates fictional biographies for mythical non-player char-
acters called sultans. These biographies consist of randomly
generated fictional events from the life of the sultan, such
as starting a war, acquiring a mythical weapon or forging an
alliance. To infuse a sense of coherence in these biographies
a domain, such as ‘glass’,‘jewels’, ‘ice’ or ‘scholarship’ is
assigned to each sultan. To tie the life events in the biography
together, the generator incorporates domain-specific elements
in each event.

Players of Caves of Qud will interpret the randomly gen-
erated biographies as coherent narratives, thereby creating
their own logical explanation for the overarching theme in
each biography. The developers call this human tendency
to perceive patterns ‘apophenia’. It is related to the ‘charity
of interpretation’ effect studied by Veale (2016), who found
that “readers will generously infer the presence of meaning
in texts that are well-formed and seemingly the product of

an intelligent entity, even if this entity is not intelligent and
the meaning not intentional.” If humans see a text in a well-
known form (or container), they are disposed to attribute
more meaning to the text than it actually contains. A simi-
lar effect is the Eliza effect described by Hofstadter (1995),
who noticed that humans will attribute intelligence or em-
pathy to (text-producing) computer systems. This approach
to evoking context is also related to the ‘intention’ aspect of
framing information (Charnley, Pease, and Colton 2012) in
computational creativity. With Churnalist, we want to exploit
this effect too: by incorporating words from the input text in
the output, we hope that readers will perceive the generated
headlines as coherent with the input.

Description of Churnalist

Churnalist is a system for generating fictional headlines that
are context-appropriate for the textual input. In this section,
we discuss the goal of the system and the requirements for the
output. We elaborate on the technical design of the system
and provide a running example.

System goal

Game writers can use Churnalist for generating flavor text
for video games, in the form of headlines. Instead of taking
newspaper article texts as input, as is common practice for
headline generators, Churnalist accepts user-supplied free
text as input, in the form of English sentences from a game.
For example, see the one-sentence input in Figure 1.

“Mario must save Princess Peach from Bowser’s castle.”

Figure 1: An example of valid input text. The names and
noun phrases that Churnalist will incorporate in the output
headlines are underlined.

Churnalist extracts a set of seed words from the input and
creates new headlines by doing word-substitution on head-
lines from a database. The seed words consist of words from
the input. We expand the set of seed words by querying a vec-
tor space of word embeddings for vectors close to the words
from the input. By using words that have a link with the
input text, or context words, we generate headlines that fit the
context that is represented by the input. By inserting context
words in the headlines from the database, we hope to exploit
the Eliza effect (Hofstadter 1995), apophenia (Grinblat and
Bucklew 2017) and the charity of interpretation (Veale 2016)
in readers: readers should think that the headlines are related
to the context. Churnalist’s output is a set of fictional head-
lines, like in Figure 2. A more extensive example of using
game text as input is provided in Figure 4.

Using free text input makes Churnalist usable for different
games and different topics. Regardless of the content or
the type of game, as long as the input text contains content
words (nouns), Churnalist will extract these from the input
and use them as seed words to generate headlines. Churnalist
was developed using publicly available datasets, open source
libraries and only simple text modification techniques, so that
for future users no linguistic expertise is required.

Mario apologises to mother involved in car crash

Mario injured after Sicily volcano triggers earthquake

Mario says Arsenal return vs Qarabag was ‘emotional’

Mario: ‘My marriage is over because I voted to leave the EU’
Princess Peach unveils world’s first Chromebook with AMD pro-
cessors

Bowser’s castle retains Border-Gavaskar trophy after cleaning up
Australia on day five

Figure 2: Example output text for Churnalist, given the input
text in Figure 1.

For Churnalist’s output, we adopt similar requirements as
Gongalo Oliveira (2012):

1. The output texts must look like headlines. We are not
generating news article texts. The content of the headlines
does not have to be realistic or ground in reality. On the
contrary: we aim for fictional output, as well as output
that is not literally present in the database of headlines (for
copyright reasons).

2. Headlines must be grammatical.

3. Headlines must feel context-appropriate (coherent, mean-

ingful, relevant) for the input text to a not-too-discerning,
not overly critical reader.

Architecture

We have implemented a prototype system with the architec-
ture shown in Figure 3. Churnalist has a modular pipeline
design so that every subtask can be implemented according
to the requirements of the user, to make the system as flexible
as possible. The pipeline consists of three modules, one for
each step in the generation process. At the end of each step,
the user of Churnalist can manually filter the output of the
system, thus fine-tuning the nouns and noun phrases that are
used in later generation steps.

The first module, the keyword extractor, reads the input
text and extracts the most important words. These words are
the seed words. The second module takes the list of seed
words and expands this with a set of loosely related words,
gathered from the knowledge base. The seed words and the
related words form the set of context words. The substitution
module takes a random headline from a headline database,
runs it through a dependency parser and substitutes parts of
the sentence with context words. The resulting new headline
is the output of the system. Users can generate multiple
headlines from one input text; the number of possible results
is determined by (1) the number of seed words in the input
text, (2) the size of the headline database and (3) the size of
the set of user-approved context words.

In the rest of this section, we describe these steps in more
detail and provide an example. Figure 4 shows an input text
taken from a dilemma-driven serious game. It features both a
situational description and some lines of NPC text. The rest
of this paper will feature examples that were generated with
this input text.

concatenated
game text

N

flavour text

nouns, names,

(English sentences) B g noun phrases knowled word vectors
eywor nowledge f
game text extraction base < : pre\:’rsrlg ed

context-appropriate \4
fictional headlines

embeddings
nouns, names,
noun phrases,
user-approved
related words

headlines
word substitution <:: headline
database

Figure 3: Churnalist: system architecture

“You are the system administrator of SuperSecure ltd, a hosting company. At four o’clock in the afternoon, your manager storms in. Apparently,

there has been a break-in in your computer network. The CEO has been receiving anonymous emails from a hacker that demands a payment of
$100,000 before midnight. If SuperSecure does not pay, they threaten to publish sensitive company documents online. The manager is worried,
since the hacker claims to possess important intellectual property. Manager: Can you find out how the hackers got into our systems? CSIRT:
We recognize this mode of operation. We will share some relevant IOCs with your company. Can you contact us if you have finished your
forensical analysis? Security officer: There has been a nation-wide increase in phishing attacks in the past few days. System administrator: |

can’t find any traces of active malware on our Windows server. I will check the network log files for malicious activity.”

Figure 4: Representative input text for Churnalist: game text from a dilemma-based serious game, consisting of a description and

a few lines of NPC text. Names and noun phrases are underlined.

Keyword extractor

The start of the pipeline is the keyword extractor. We assume
that the input text consists of grammatical sentences, so that
it can be parsed by a sentence tokenizer and a dependency
parser. The keyword extractor runs the input text through the
NLTK sentence tokenizer! and the spaCy? part-of-speech-
tagger and dependency parser trained on spaCy’s default
corpus for English.? It uses spaCy’s noun phrase extraction
to extract all English noun phrases from the input text. The
keyword extractor saves all noun phrases that occur in the
input text, together with the head of each noun phrase. Chur-
nalist uses the head nouns as seed words and saves the noun
phrase itself so it can be reused later, during the word substi-
tution phase. See Figure 5 for an example of seed words and
the corresponding noun phrases as extracted from the input
text in Figure 4.

Knowledge base

In order to get more variety in our output, and not limit
the words used in our output to nouns extracted from the
input text, we extend the list of seed words with related
words. Note that we mean ‘related’ in a broad sense; not
just synonyms. To obtain these words, Churnalist queries
the knowledge base for words similar to the seed words. We
took this idea from the procedurally generated biographies in
Caves of Qud (Grinblat and Bucklew 2017), which evoked a
feeling of coherence because of the related domain words that
were put into the biography. For example, for the seed word

INLTK 3.3, https://www.nltk.org
2spaCy 2.0.16, https: //www.spacy.io
3Language model en_core_web_sm 2.0.0

‘ice’ the words ‘lightblue’, ‘frost’, ‘cold’ or ‘winter’ would
all be suitable related words. The word lists for the various
domains in Caves of Qud were written manually by the game
developers. However, we do not want to build large content
models by hand. Instead, we want to focus on generating text
from data that can be obtained automatically. Like Repar et al.
(2018), we used the English dataset of FastText’s pre-trained
word embeddings (Bojanowski et al. 2017) as a knowledge
base, similar to the external semantic datasets used by the
PoeTryMe framework (Gongalo Oliveira 2012).

Word embeddings are a method for encoding words as
their context, based on a corpus. The FastText dataset is
based on a corpus of Wikipedia articles. It contains words
represented as vectors that encode the context of these words.
Words (vectors) that are close to each other in the resulting
vector space, are words that occur in similar contexts.

A useful property of the FastText dataset is that it contains
word embeddings that encode subword information: the vec-
tor of a word is created from the vectors of its subwords of
length n. As a consequence, the dataset can be used to obtain
vectors for out-of-vocabulary words: we only need to create
a vector for them by looking at the vectors of their subwords.
This allows us to deal with words that are not present in the
semantic resources being used. Consequently, we bypass
a problem similar to O Poeta Artificial’s out-of-vocabulary
hashtags (Gongalo Oliveira 2017). Another advantage of
using FastText is that its datasets are available in multiple
languages, which allows us to port our system to languages
other than English (for instance, Dutch).

The seed words are passed on to the knowledge base,
which tries to assign a vector to each word and find its closest
neighbours. If the seed word is an out-of-vocabulary word,

Head noun noun phrase

administrator ~ system administrator
company hosting company, company
network computer network

CEO CEO

emails anonymous emails
documents sensitive company documents
manager manager

property important intellectual property
hackers hackers

I0Cs relevant IOCs

analysis forensical analysis

officer Security officer

traces traces

malware active malware

server Windows server

files network log files

activity malicious activity

Figure 5: Noun phrases and their head noun that the key-
word extractor extracted from the input text from Figure 4.
Generic phrases, such as ‘days’, ‘o’clock’ and ‘afternoon’,
were removed manually from the list of seed words.

Word distance remark

companiess 0.7817 typographical error
subsidiary 0.6847
telecompany 0.6821
companywide 0.6773
ecompany 0.6668
webcompany 0.6496
corporation 0.6315
firm 0.6218

too specific
not a noun
too specific

Figure 6: Examples of suggestions from the knowledge base
for the word ‘company’, together with the distance between
the word vector for ‘company’ and the word vector for the
suggestion. The knowledge base lists results in descending
order of distance to the seed word. The final column lists
reasons for rejecting this word. Not all suggestions by the
knowledge base are shown.

the system calculates a new vector for the word based on the
word embeddings of its subwords, and uses this new vector
to find related words. The user can set a minimum distance
for suggestions from the knowledge base and select which
suggested words should be passed on to the substitution step.
For an example of the results of the knowledge base, see
Figure 6.

The knowledge base contains a machine-learned word em-
beddings model that was trained on Wikipedia dumps. Con-
sequently, there are words in the model that are unsuitable for
inclusion in Churnalist’s output, such as words with crowd-
sourced typographical errors. For example, the words closest
to ‘company’ are ‘companiess’, ‘companythe’ and ‘compa-
nyx’, which result from typographical errors (and possibly
pre-processing errors) in the Wikipedia dataset. Additionally,
some words are very similar to one of the seed words but
have no connection to the way that seed word is used in the
input text. Take the compound noun ‘security officer’, which

means someone who defines and enforces the information
security policy in a company. Its head noun is ‘officer’, for
which the KB will list ‘sergeant’, ‘quartermaster’ and ‘sub-
lieutenant’ as related words. However, these words have little
connection with the term ‘security officer’ and should not
be used in the output. The user of Churnalist can filter such
unsuitable suggestions for related words from the knowledge
base.

The set of seed words together with the set of related
words from the knowledge base forms the set of context
words. Figure 7 shows the final set of context words for the
seed words from Figure 5.

Substitution module

The substitution module receives the list of context words
from the knowledge base module and produces new head-
lines that contain one or more context words. It creates new
headlines by substituting the subject of an existing headline
from the headline database. This approach is similar to that
of Headylines (Gatti et al. 2016), which inserts keywords
from a newspaper article into existing sentences.

As external dataset of headlines, we use a collection of
headlines scraped with the API from News APL* This API
returns headlines and article excerpts from several large news
websites. We collected 3629 headlines from media from the
UK and the US in December 2018 and January 2019.

The substitution module starts by picking a random head-
line from the headline database. This headline is used as
the starting point for one new headline. The headline is
run through spaCy’s part-of-speech-tagger and dependency
parser, trained on spaCy’s default English corpus. From the
information of the parser, Churnalist tries to find the sub-
ject of the sentence. This is the substitution target. If the
parser cannot determine what the subject of the sentence is,
a different headline is drawn randomly from the headline
database.

Next, Churnalist chooses a random seed word. Each seed
word has a set of context words associated with it: the
seed word itself, noun phrases from the input, and the user-
approved related words from the knowledge base. Churnalist
randomly chooses one of these as a substitution candidate.
If the substitution target is of a different number than the
substitution candidate, Churnalist converts the candidate to
the right number (singular to plural or vice versa). Finally,
the target is substituted by the candidate and the new headline
is presented to the user.

Results

In this section, we discuss our results. Figure 8 shows exam-
ples of generated headlines, together with the original head-
line and seed word. Consider the requirements we mentioned
earlier: generated headlines should have an appropriate form,
should be grammatical and should be context-appropriate for
the input text.

Firstly, applying text modification to the headlines will lead
to texts that again look like headlines. Informal inspection
of the headlines generated suggests that this requirement is

*News API, https://newsapi.org

Seed word approved suggestions rejected suggestions

administrator - administratorship, admininistrator, nonadministrator
company subsidiary, webcompany companiess, companythe, companynew
CEO executive, shareholder, entrepreneur, investor CFO, COO, CTO

network - networky, networkx, networknbc

emails - emailings, voicemails, emailers
documents documentation, memos, archives documentations, documen, documentries
manager teammanager managership, imanager, managerin
property - poperty, propert, propertyless

hackers hacktivists, cybercriminals, scammers hackings, blizzhackers, hackery

I0Cs - ligtvoet, zeijst, lennaert

analysis - analyses, analysises, analysist

officer - underofficer, officerer, commander
malware spamware, botnet, vulnerabilities spyware, malwarebytes, antivirus

server - iserver, vserver, pvserver

files folders, fileserver fileset, filesmy, filespace

activity - activitiy, activitism, activin, reactivities

Figure 7: Seed words and examples of knowledge base suggestions for related words. Not all words suggested by the knowledge
base are shown. The results were approved and rejected manually by the first author. Words in the ‘approved’ column are added

to the set of context words.

Seedword system administrator

Headline Revealed: 500k number plate conman is a convicted people smuggler

Output Revealed: system administrator is a convicted people smuggler

Seedword hosting company

Headline Pelosi has edge over Trump on budget negotiations, CBS News poll shows
Output Hosting company has edge over Trump on budget negotiations, CBS News poll shows
Seedword computer network

Headline Met Office issues ice warning as snow hits UK

Output Computer network issues ice warning as snow hits UK

Seedword hacker

Headline Uber loses latest legal bid over driver rights

Output Hacker loses latest legal bid over driver rights

Seedword sensitive company documents

Headline Investigators revise cause of escape room fire that killed 5 girls

Output Sensitive company documents revise cause of escape room fire that killed 5 girls
Seedword forensical analysis

Headline MPs’ threat to block government’s tax without second brexit referendum

Output MPs’ threat to block forensical analysis without second brexit referendum

Figure 8: Generated headlines for the input text in Figure 4.

fulfilled sufficiently. The headlines are often grammatical, but
not always. Sometimes, the dependency parser has trouble
selecting the full noun phrase in both the input text and in
the headlines from the headline database, which leads to only
partially substituted objects and subjects. Since Churnalist
is meant for supporting game writers, we rely on the user to
filter and discard ungrammatical output.

In the current version of the system, where seed words and
headlines are selected and matched at random, many of the
generated headlines would probably not yet be considered
context-appropriate. For example, readers will not necessar-
ily relate headlines mentioning ‘company documents’ to the
stolen company documents from the game text. We have
not yet formally evaluated the output of our system for the
‘context-appropriate’ property. We plan on making further
improvements to the system and evaluating both the system
and the outputs. It could be that readers behave according to
Veale’s ‘charity of interpretation’ and are more generous in

their interpretation than we anticipate.

Some seed words have a stronger connection to the game
story and will evoke a stronger sense of coherence than others.
For example, we expect that headlines that mention ‘hackers’
will be easier for the readers to connect to the story than
headlines that mention ‘managers’. Most companies have
managers; few companies have problems with malicious
attacks from hackers. We expect that incorporating a stricter
filter for seed words will lead to headlines with a stronger
link to the game story from the input text. For example, we
could rank seed words based on their term frequency-inverse
document frequency (tf-idf). This would take into account
that seed words that occur frequently in general are probably
less representative for the input text than seed words that
occur rarely in other English texts. For now, we leave the
task of filtering the seed words and generated headlines to
the human user of Churnalist.

Finally, choosing a random headline from the database for

substitution is a mixed blessing. On the one hand, combining
a context word with the randomized headline can lead to sur-
prising, unexpected and creative outputs. On the other hand,
sometimes the link with the context word that was chosen for
substitution is far-fetched or even downright ridiculous.

The application domain of Churnalist is supporting game
writers in their creative task. Since Churnalist requires no
linguistic knowledge, it is an accessible tool. Instead of re-
lying on hand-written linguistic models, it requires external
datasets for its text modification functionality, By using News
API for collecting headlines and using the FastText dataset as
knowledge base, Churnalist can run fully on publicly avail-
able data. Similarly to PoeTryMe, users can choose to use
different datasets for their particular application, for example
for a different language than English.

However, using external data for NLG has some caveats.
Reusing headlines has as advantage that we do not have to
write templates. The disadvantage is that quality of the output
headlines will never be better than the quality of the headlines
from the headline database. Using headlines from low-quality
news outlets with click-bait headlines, the output headlines
will show similar clickbait properties.

Conclusion

We have presented Churnalist, a system for generating fic-
tional headlines. The content of the headlines is determined
by the noun phrases present in the input text. Churnalist
creates new headlines by taking keywords from the input as
seed words. It expands the list of seed words by querying
a knowledge base of word embeddings for related words
and injecting these into existing headlines via word substitu-
tion. We circumvented problems with out-of-vocabulary seed
words by using word vectors based on subword information.
The user can fine-tune the quality of Churnalist’s output by
filtering the intermediary output of each step in the system
pipeline.

Churnalist can be used by game writers, as an authoring aid
for writing flavor text in the form of headlines. We have pro-
vided example outputs for every step in the system pipeline,
generated from game text from a dilemma-based game. Since
our system was developed using publicly available datasets,
open source libraries and only simple text modification tech-
niques, Churnalist requires no linguistic expertise from its
users. Although Churnalist is currently implemented for
English, the use of external datasets allows us to adapt the
system to other languages and use cases with minimal effort.
This makes Churnalist suitable for different languages and
game types.

Future work

There are three main directions for future work on Churnalist.
Firstly, we can improve the implementation by using better
and more appropriate tools and resources. We used an open
source dependency parser for Churnalist that was trained on
a standard corpus of English. Training the parser on a set of
headlines could improve its accuracy, which might lead to
better quality text transformations. Similarly, we expect that
the quality of text transformation will improve if the headline

database consists of better quality data, such as the annotated
GigaWord corpus (Napoles, Gormley, and Van Durme 2012).

Secondly, there are several possibilities for expanding
Churnalist’s approach to generation. Like related systems
(Gongalo Oliveira 2012; Ozbal, Pighin, and Strapparava
2013; Repar et al. 2018), Churnalist could use a generate-
and-test strategy, where multiple candidate headlines are
generated and a fitness function determines the best candi-
date headline or headlines from this set as output. Instead
of applying word substitution to randomly chosen headlines,
Churnalist could select headlines that show semantic simi-
larity with the input text and use these as a basis for trans-
formation. More advanced methods for keyword extraction
from the input texts could be used, going beyond simple
noun extraction. Using additional semantic resources, such
as Wordnet or ConceptNet, could also help Churnalist in
suggesting more valid words to the user.

Thirdly, we would like to expand Churnalist’s outputs
to also include social media messages, to make it possible
to automatically generate social media messages as flavor
text. To generate social media messages, we could take a
similar text transformation approach as we have used for
the headlines. As social media is often used to share news
headlines, we can incorporate headlines as a specific type of
social media messages. In fact, some malicious Twitter bots
use text modification techniques and news headline sharing
to disguise the fact that they are bots (Hegelich and Janet-
zko 2016). Additionally, both headlines and social media
messages are interesting vehicles for exploring affective lan-
guage generation. For example, we could generate headlines
with a particular political slant or social media messages that
express a particular emotion.

Finally, we still need to evaluate our approach to text gener-
ation for games. We plan to do so in various ways. We want to
ask human judges to assess the output of Churnalist on prop-
erties such as grammaticality and ‘context-appropriateness’
(see our headline requirements), and draw comparisons with
a baseline. Given the current popularity and quality of neural
generation systems, we would also like to compare the output
of Churnalist to state-of-the-art neural headline generation
systems, given the same game text as input.

Acknowledgments

This research is supported by the Netherlands Organisation
for Scientific Research (NWO) via the DATA2GAME project
(project number 055.16.114). We would like to thank Dr.
Lorenzo Gatti and all reviewers for their useful remarks.

References

Backus, K. 2017. Managing output: boredom versus chaos.
In Short, T. X., and Adams, T., eds., Procedural Generation
in Game Design. AK Peters/CRC Press. chapter 2, 13-21.
Banko, M.; Mittal, V. O.; and Witbrock, M. J. 2000. Headline
generation based on statistical translation. In Proceedings
of the 38th Annual Meeting of the Association for Computa-
tional Linguistics (ACL), 318-325.

Bay, B.; Bodily, P.; and Ventura, D. 2017. Text transforma-
tion via constraints and word embedding. In ICCC, 49-56.

Bojanowski, P.; Grave, E.; Joulin, A.; and Mikolov, T. 2017.
Enriching word vectors with subword information. Transac-

tions of the Association of Computational Linguistics 5:135—
146.

Charnley, J. W.; Pease, A.; and Colton, S. 2012. On the
notion of framing in computational creativity. In ICCC, 77—
81.

Colmenares, C. A.; Litvak, M.; Mantrach, A.; and Silvestri,
F. 2015. Heads: Headline generation as sequence prediction
using an abstract feature-rich space. In Proceedings of the
2015 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies, 133—-142.

Colossal Order. 2017. Cities: Skylines. Game [PC]. Paradox
Interactive, Stockholm, Sweden.

Dorr, B.; Zajic, D.; and Schwartz, R. 2003. Hedge Trim-
mer: A parse-and-trim approach to headline generation. In
Proceedings of the HLT-NAACL 03 Text Summarization Work-
shop, 1-8.

Eidos Montral. 2011. Deus Ex: Human Revolution. Game
[PC]. Square Enix, Shinjuku, Tokyo, Japan.

Freehold Games. 2018. Caves of Qud.
[PC/Mac/Linux]. Freehold Games, USA.

Gatti, L.; Ozbal, G.; Guerini, M.; Stock, O.; and Strapparava,
C. 2015. Slogans are not forever: Adapting linguistic expres-
sions to the news. In Proceedings of the Twenty-Fourth In-

ternational Joint Conference on Artificial Intelligence, 2452—
2458.

Gatti, L.; Ozbal, G.; Guerini, M.; Stock, O.; and Strapparava,
C. 2016. Heady-lines: A creative generator of newspaper
headlines. In Companion Publication of the 21st Interna-
tional Conference on Intelligent User Interfaces, IUI 2016,
79-83.

Gongcalo Oliveira, H. 2012. PoeTryMe: a versatile platform
for poetry generation. In Proceedings of the ECAI 2012
Workshop on Computational Creativity, Concept Invention,
and General Intelligence (C3GI at ECAI 2012).

Gongalo Oliveira, H. 2017. O Poeta Artificial 2.0: Increas-
ing meaningfulness in a poetry generation twitter bot. In
Proceedings of the Workshop on Computational Creativity in
Natural Language Generation (CC-NLG 2017), 11-20.

Grinblat, J., and Bucklew, C. B. 2017. Subverting historical
cause & effect: generation of mythic biographies in Caves of
Qud. In Proceedings of the 12th International Conference on
the Foundations of Digital Games, 1-7.

Hegelich, S., and Janetzko, D. 2016. Are social bots on
Twitter political actors? Empirical evidence from a Ukrainian
social botnet. In Tenth International AAAI Conference on
Web and Social Media.

Hofstadter, D. 1995. Preface 4: The ineradicable Eliza effect
and its dangers. In Fluid concepts and creative analogies:
computer models of the fundamental mechanisms of thought.
Basic Books, New York.

Jing, H. 2000. Sentence reduction for automatic text summa-
rization. In Proceedings of the Sixth Conference on Applied

Game

Natural Language Processing, 310-315. Seattle, Washington,
USA: Association for Computational Linguistics.

Lukin, S. M.; Ryan, J. O.; and Walker, M. A. 2014. Automat-
ing direct speech variations in stories and games. In 7enth
Artificial Intelligence and Interactive Digital Entertainment
Conference.

Maxis. 1996. SimCity 2000. Game [PC]. Maxis Software
Inc./Electronic Arts.

Napoles, C.; Gormley, M.; and Van Durme, B. 2012. An-
notated GigaWord. In Proceedings of the Joint Workshop
on Automatic Knowledge Base Construction and Web-scale
Knowledge Extraction, 95-100. Association for Computa-
tional Linguistics.

Ozbal, G.; Pighin, D.; and Strapparava, C. 2013. BRAINSUP:
Brainstorming support for creative sentence generation. In
Proceedings of the 51st Annual Meeting of the Association
for Computational Linguistics (ACL), 1446-1455.

Repar, A.; Martinc, M.; Znidargic, M.; and Pollak, S. 2018.
BISLON: Blsociative SLOgaN generation based on stylistic
literary devices. In ICCC, 248-255.

Schliinder, B., and Klabunde, R. 2013. Greetings generation
in video role playing games. In Proceedings of the 14th
European Workshop on Natural Language Generation, 167—
171.

Shen, S.-Q.; Lin, Y.-K.; Tu, C.-C.; Zhao, Y.; Liu, Z.-Y.; Sun,
M.-S.; et al. 2017. Recent advances on neural headline
generation. Journal of Computer Science and Technology
32(4):768-784.

Strong, C. R.; Mehta, M.; Mishra, K.; Jones, A.; and Ram,
A. 2007. Emotionally driven natural language generation
for personality rich characters in interactive games. In Pro-
ceedings of the Third Artificial Intelligence and Interactive
Digital Entertainment (AIIDE), 98—100.

Thiennot, J. O. 2013. Cookie Clicker. Game
[PC/Browser]. http://orteil.dashnet.org/
cookieclicker/. Played September 2018.

Veale, T. 2016. The shape of tweets to come: Automating
language play in social networks. Multiple Perspectives on
Language Play 1:73-92.

Yannakakis, G. N., and Togelius, J. 2011. Experience-driven
procedural content generation. IEEE Transactions on Affec-
tive Computing 2(3):147-161.

