
Interpreting a Successful Testing Process:

Risk and Actual Coverage

Mariëlle Stoelinga and Mark Timmer∗

Formal Methods & Tools Group
Department of Computer Science

University of Twente, The Netherlands
{marielle, timmer}@cs.utwente.nl

May 7, 2009

Abstract

Testing is inherently incomplete; no test suite will ever be able to test
all possible usage scenarios of a system. It is therefore vital to assess
the implication of a system passing a test suite. This paper quantifies
that implication by means of two distinct, but related, measures: the risk
quantifies the confidence in a system after it passes a test suite, i.e., the
number of faults still expected to be present (weighted by their severity);
the actual coverage quantifies the extent to which faults have been shown
absent, i.e., the fraction of possible faults that has been covered. We
provide evaluation algorithms that calculate these metrics for a given test
suite, as well as optimisation algorithms that yield the best test suite for
a given optimisation criterion.

1 Introduction

Software becomes more and more complex, making thorough testing an in-
dispensable part of the development process. The U.S. National Institute of
Standards and Technology has assessed that software faults cost the American
economy almost sixty billion dollars annually [1]. More than a third of these
costs could be eliminated if testing occurred earlier in the development process.

An important fact about testing is that it is inherently incomplete, since
testing everything would require infinitely many input scenarios. On the other
hand, passing a well-designed test suite does increase the confidence in the

∗This research has been partially funded by NWO under FOCUS/BRICKS grant
642.000.505 (MOQS) and by the European Union under grant FP7-ICT-2007-1 (QUASI-
MODO).

correctness of the tested product. Therefore, it is important to assess the quality
of a test suite. Two fundamental concepts have been put forward to evaluate test
suite quality: (1) coverage metrics determine which portion of the requirements
and/or implementation-under-test has been exercised by the test suite; (2) risk-
based metrics assess the risk of putting the tested product into operation.

Although existing coverage measures, such as code coverage in white-box
testing ([2, 3]) and state and/or transition coverage in black-box testing ([4, 5,
6]), give an indication of the quality of a test suite, it is not necessarily true that
higher coverage implies that more, or more severe, faults are detected. This is
because these metrics do not take into account where in the system faults are
most likely to occur. Risk-based testing methods do aim at reducing the ex-
pected number of faults, or their severity. However, these are often informal [7],
based on heuristics [8], or indicate which components should be tested best [9],
but rarely quantify the risk after a successful testing process in a precise way.

In this paper, we present a framework in which risk and coverage can be
defined, computed and optimised in a black-box manner, for systems with non-
determinism. Key properties are a rigorous mathematical treatment based on
solid probabilistic models, and the result that lower risk (or higher coverage)
implies a lower expected number of faults.

Overview. The starting point in our theory is a weighted fault specification
(WFS), consisting of (1) a specification describing the desired system behaviour
as an input-output labelled transition system (IOLTS), (2) a weight function
describing the severity of faults, (3) an error function describing the probabil-
ity that a certain error has been made, and (4) a failure function describing
the probability that incorrectly implemented behaviour yields a failure. The
error probabilities are assumed to be independent, which is partly justified by
abstracting the actual inputs into equivalence classes. Still, this assumption is
quite strict, but we think that a thorough understanding of simple models is
the best start when tackling the more complex situation with dependent prob-
abilities. The failure function is based on the fact that, due to nondeterminism,
observing a correct response once does not yet imply correctness. That is, a sys-
tem might respond differently to the same inputs during different executions.

From the WFS we derive its underlying probability model, i.e., a random
variable that describes the distribution of (possibly erroneous) implementations.
This allows us to define risk and actual coverage in an easy and precise way.

Given a WFS, we define the risk of a test suite as the expected fault weight
that remains after this test suite passes. We show how to construct a test
suite of a certain size with minimal expected risk. We also introduce actual
coverage for a test suite, which quantifies the risk reduction obtained when an
implementation passes it. Whereas risk is based on faults contained within the
entire system, actual coverage only relates to the part of the system that has
been tested. This matches with the traditional interpretation of coverage.

Our methods refine the theory presented by Brandán Briones, Brinksma, and
Stoelinga [10]. They introduced a concept we would call potential coverage, as it
considers which faults can be detected during testing. Our measures, however,

2

take into account the faults that are actually covered during a test execution,
making them more precise.

While error probabilities and failure probabilities are important ingredients
of our framework, techniques for obtaining them fall outside the scope of this
paper. However, there is extensive literature on factors that determine them.
For instance, estimations of the error probabilities can be based on the software
change history [11]. They can also be based on McCabe’s cyclomatic complexity
number [12], Halstead’s set of Software Science metrics [13], and requirements
volatility [14]. The failure probabilities can be obtained by applying one of the
many analysis techniques described in [15] and [16]. In practice it might still
be difficult to estimate all the probabilities that are needed, asking for simpli-
fying approximations. This paper could then serve as a baseline for sensitivity
analysis [17], making it possible to assess the impact of these simplifications.

Finally, we note that our measures can easily be applied at higher abstrac-
tion levels. For instance, instead of defining behaviour in terms of basic actions,
it could be defined in terms of function or module calls. A fault weight then
denotes the severity of an error in a certain module, and error and failure prob-
abilities describe respectively the expected presence of faults and occurrence of
failures in the modules, providing risk and coverage measures for module testing.

Organisation of the paper. The model is described in Section 2, risk in
Section 3, and actual coverage in Section 4. Section 5 discusses conclusions and
future work.

2 The WFS Model

2.1 Preliminaries and notations

Definition 1 (Preliminaries). Given a set L, the set of all sequences over L is
denoted by L∗, and the set of non-empty sequences by L+. If σ, ρ ∈ L∗, then
σ is a prefix of ρ (denoted σ v ρ) if there is a σ′ ∈ L∗ such that σσ′ = ρ. If
σ′ ∈ L+, then σ is a proper prefix of ρ (denoted σ @ ρ).

We model systems by IOLTSs, which describe behaviour by means of states
and transitions [18]. Transitions are always caused by either an input action or
an output action. In order to be able to model realistic systems using IOLTSs,
we apply equivalence partitioning. That is, the inputs are partitioned into
equivalence classes such that one input is representative for all others in its
class [3]. This way, the action set can be kept finite, often even small.

Definition 2 (IOLTSs). An IOLTS A is a tuple 〈S, s0, L,∆〉, where

• S is a finite set of states,

• s0 ∈ S is the initial state;

3

s0s1 s2

δ

10ct? 20ct?

tea! coffee!

xx.tea!

state w perr pfail

s0 40 0.01 0.4
s1 25 0.07 0.5
s2 25 0.05 0.4

(a) A WFS W

fail pass

passfail fail

x20ct?

coffee! xδ tea!

coffee! xδ tea!

(b) A test case t

Figure 1: A WFS and a test case

• L is a finite set of actions, partitioned into a set LI of inputs (suffixed
by a question mark) and a set LO of outputs (suffixed by an exclamation
mark);

• ∆ ⊆ S×L×S is the transition relation, which is required to be (internally)
deterministic. Formally, (s, a, s′) ∈ ∆ ∧ (s, a, s′′) ∈ ∆ =⇒ s′ = s′′.

We write Aspec to denote a specification. An IOLTS Aimpl is a (potentially
incorrect) implementation of Aspec if it has the same alphabet and is input-
enabled, i.e., for all s ∈ S and a ∈ LI, there exists an s′ ∈ S with (s, a, s′) ∈ ∆.
The set of possible implementations of A is denoted by IMPLA.

Definition 3 (Paths and traces). Let A = 〈S, s0, L,∆〉 be an IOLTS, then a
path in A is a finite sequence of states and actions π = s0a1s1a2 . . . ansn, with
s0 = s0 and ∀i ∈ {0, . . . , n− 1} : (si, ai+1, si+1) ∈ ∆. The set of all paths in A
is denoted by pathsA.

Each path π has a trace associated with it, denoted by trace(π) and given by
the sequence of the actions of π. From the set of all paths in A we can deduce
the set of all traces in A: tracesA = {trace(π) | π ∈ pathsA}.

We use A[σ] for the set of outputs that A can provide as a response to σ,
i.e., A[σ] = {b! ∈ LO | σb! ∈ tracesA}.

A trace σ is implemented incorrected by Aimpl if Aimpl might respond in-
correctly to it, i.e., if Aimpl[σ] 6⊆ Aspec[σ].

Example 1. The upper part of Figure 1(a) shows an IOLTS. Its states are
represented by circles, and its initial state by an extra inner circle. The special
action δ (quiescence) is used to denote that the absence of any output action is
required.

An example path in A is (s0 20ct? s2 coffee! s0 10ct? s1 tea! s0). The
corresponding trace is (20ct? coffee! 10ct? tea!). It holds that A[10ct?] = {tea!}.
(For readability, parentheses are often placed around traces and paths.)

4

2.2 Weighted Fault Specifications

Since it is uncertain which faults are introduced, developing an implementation
can be described by a random experiment. For each trace, we specify the prob-
ability that an implementation might respond incorrectly; its error probability.
These probabilities are assumed to be independent, which corresponds to the
assumptions made in equivalence partitioning. There, the assumption is that
correctness of a single input of an equivalence class implies correctness of all
other inputs in its class, whereas it implies nothing about the correctness of
inputs in other equivalence classes.

Since not all failures that can occur at a certain trace will actually occur
when executing that trace once, we specify a failure function. This function
yields, for any trace σ, the probability that an implementation produces an
incorrect output directly after σ during an arbitrary execution.

Finally, a fault weight is specified for each trace, denoting the severity of an
incorrect implementation with respect to that trace (or rather, its equivalence
class). The higher a fault weight, the higher the severity.

A specification together with fault weights, error probabilities, and failure
probabilities, constitutes a weighted fault specification.

Definition 4 (WFSs). A WFS (weighted fault specification) is a tuple W =
〈Aspec, w, perr, pfail〉, with

• Aspec = 〈S, s0, L,∆〉 an IOLTS;

• w : tracesAspec → R≥0 a weight function assigning a fault weight to
each trace of Aspec, such that 0 <

∑
σ∈tracesAspec

w(σ) < ∞. This con-
straint allows us to define a coverage notion relative to the total weight∑
σ∈tracesAspec

w(σ). The fault weight w(σ) denotes the severity of an er-
roneous output directly after σ;

• perr : tracesAspec → [0, 1] an error function assigning to each trace σ of
Aspec the probability perr(σ) that an implementation can provide an incor-
rect output directly after σ, i.e., that for an arbitrary Aimpl it holds that
Aimpl[σ] 6⊆ Aspec[σ];

• pfail : tracesAspec → [0, 1] a failure function assigning to each trace σ of
Aspec the probability pfail(σ) that an arbitrary implementation Aimpl with
Aimpl[σ] 6⊆ Aspec[σ] responds incorrectly to σ.

An implementation of W is an implementation of Aspec.

Since w, perr and pfail have infinite domains, they cannot be specified di-
rectly, and we need a finite way of representing them. We will specify perr in
an easy way by simply assigning a value perr(s) to each state s, and defining
perr(σ) = perr(last(σ)), where last(σ) is the last state of the path associated with
σ. Analogously, pfail is defined.

Following [10], w can be specified by truncation, i.e., explicitly specifying
the fault weight of all traces smaller than a certain size and defining all others

5

to have fault weight zero. Alternatively, fault weights can be assigned to the
states and a discount factor λ can be used to determine the fault weights of
traces; that is, w(σ) = w(last(σ)) · λ|σ|, where |σ| is the number of transitions
of σ. Choosing 0 ≤ λ < 1

m , with m the maximal outdegree of the IOLTS,
this keeps the accumulated fault weight of all traces finite. Note that it is also
sufficient to only apply this restriction to the derivation for traces larger than
some threshold, and use a different (or no) discount factor for the shorter traces.

Our framework does not rely on the way w, perr, and pfail are specified, and
thus can handle any of the above methods.

Example 2. In all examples we will use λ = 0.9 for short traces (all traces
explicitly used in examples being short). A specification of w, perr and pfail for
the states of the IOLTS of the previous example is shown in Figure 1(a). Given
for example σ = (20ct? coffee!), consequently w(σ) = 40 · 0.92 = 32.4. Also,
perr(σ) = 0.01 and pfail(σ) = 0.4.

The fault weight of an implementation Aimpl is defined as the total fault
weight of all incorrectly implemented traces.

Definition 5 (Fault weight). Let W = 〈Aspec, w, perr, pfail〉 be a WFS and Aimpl

an implementation of W , then the fault weight of Aimpl is defined by

w(Aimpl) =
∑

σ∈tracesAspec
Aimpl[σ] 6⊆Aspec[σ]

w(σ) ,

which is less than infinity by the assumptions on w.

2.3 Test Cases and Test Suites

To investigate the quality of systems, test cases and suites are used. Following
ioco theory [18], we require test cases for IOLTSs to be fail fast ; they stop
directly after observing a failure. Test cases repeatedly either perform an input
action or observe which output action a system provides.

Definition 6 (Test cases and suites). (i) A test case t for an IOLTS Aspec =
〈S, s0, L,∆〉 is a prefix-closed, finite subset of L∗, such that for all σ ∈ L∗,
a? ∈ LI, and a! ∈ LO

• if σa? ∈ t, then ∀b ∈ L : b 6= a? =⇒ σb 6∈ t;

• if σa! ∈ t, then ∀b! ∈ LO : σb! ∈ t;

• if σ 6∈ tracesAspec , then ∀σ′ ∈ L+ : σσ′ 6∈ t.

A test suite T is a tuple of test cases, denoted 〈t1, . . . , tn〉.
(ii) An execution of t is a trace σ ∈ t such that there is no ρ ∈ t with σ @ ρ,

i.e., σ is a maximal element of t. The set of all executions of t is denoted by
exect. An observing trace of t is a trace that is followed by an observation, i.e.,
a trace σ ∈ t such that ∀b! ∈ LO : σb! ∈ t.

6

s0s1 s2

δ

10ct? 20ct?

tea! coffee!

xx.tea!

(a) A specification Aspec

s0s1 s2

δ

10ct? 20ct?

coffee!

xx.tea!

(b) Implementation Aimpl1

s0s1 s2

δ

10ct? 20ct?

choco! coffee!

(c) Implementation Aimpl2

Figure 2: The classification relation; Aimpl1 ∼Aspec Aimpl2

(iii) An execution of a test suite 〈t1, . . . , tn〉 is a sequence E = 〈σ1, . . . , σn〉,
such that σi is an execution of ti for all i. It is a correct execution if σi ∈
tracesAspec for all i.

(iv) For each test suite execution E = 〈σ1, . . . , σn〉 and trace σ ∈ L∗,
we define obs(σ,E) as the number of times E observed directly after σ, i.e.,
obs(σ,E) = |{i | ∀b! ∈ LO : σb! v σi}|. We use obs(σ, T) to denote the
number of times an execution of T might observe after σ, i.e., obs(σ, T) =
|{i | ∀b! ∈ LO : σb! ∈ ti}|. The set of all observing traces of T is given by
obsT =

⋃
ti∈T {σ ∈ ti | ∀b! ∈ LO : σb! ∈ ti}.

Example 3. A test case t for the IOLTS of the previous examples is shown in
Figure 1(b). We have exect = {(20ct? δ), (20ct? tea!), (20ct? coffee! coffee!),
(20ct? coffee! δ), (20ct? coffee! tea!)}. The set of observing traces of the test
suite T = 〈t〉 is obsT = {(20ct?), (20ct? coffee!)}.

Let T = 〈t, t〉 be a test suite containing t twice. The maximum number of
times an execution of T may observe after σ = (20ct? coffee!) is obs(σ, T) = 2.
However, given the execution E = 〈(20ct? tea!), (20ct? coffee! δ)〉 there was
only one such observation, so as a result we have obs(σ,E) = 1.

2.4 Underlying Probability Model

Since we only care which traces are handled incorrectly, and we do not care
about the incorrect responses, we partition the possible implementations into
classes of implementations that respond correctly to exactly the same traces.

Definition 7 (Classification relation). Let Aspec be a specification, and Aimpl1
and Aimpl2 two of its implementations, then the relation ∼Aspec is defined by

Aimpl1 ∼Aspec Aimpl2 iff
∀σ ∈ tracesAspec : Aimpl1[σ] ⊆ Aspec[σ]⇔ Aimpl2[σ] ⊆ Aspec[σ] .

We use [[Aimpl]]Aspec to denote the equivalence class of Aimpl with respect to the
relation ∼Aspec , and leave out the subscript Aspec whenever no confusion arises.

We lift the fault weight of implementations to classes of implementations by
saying that w([[Aimpl]]) = w(Aimpl).

7

Example 4. Given the specification shown in Figure 2(a), the implementations
Aimpl1 and Aimpl2 as shown in Figure 2(b) and Figure 2(c) are equivalent (i.e.,
they belong to the same equivalence class). After all, they both respond incor-
rectly to the trace (10ct?) and all other traces ending in s1, and correctly to
all traces not ending in s1. Note that it does not matter that a different incor-
rect response is given to (10ct?), or that a different correct response is given to
(20ct?).

The function perr of a WFS induces a random variable AW over the equiv-
alence classes of ∼Aspec . Because the number of possible implementations is
uncountable, AW is a continuous random variable and hence the probability of
every individual implementation is 0.

Definition 8 (AW). Let W = 〈Aspec, w, perr, pfail〉 be a WFS, then we define
AW : Ω→ IMPLAspec/∼ to be the random variable representing the equivalence
class of an arbitrary implementation of W .

We will often use the event that AW = [[Aimpl]] such thatAimpl[σ] ⊆ Aspec[σ],
and denote this by AW [σ] ⊆ Aspec[σ]. Note that by definition P[AW [σ] ⊆
Aspec[σ]] = 1− perr(σ).

For each test suite T , the error function and failure function also induce a
random variable representing the execution of T . After all, due to nondetermin-
ism the same test suite might test different traces during different executions.

Definition 9 (RW,T). Let W = 〈Aspec, w, perr, pfail〉 be a WFS and let T =
〈t1, . . . , tn〉 be a test suite for Aspec, then we define RW,T : Ω→ exect1 × exect2 ×
· · · × exectn to be the random variable representing the result of executing T
against an arbitrary implementation of W .

Note that the distribution of RW,T depends on the distribution of outputs
the system provides. However, we do not need the explicit distribution of RW,T
here.

A random variable whose distribution we do need in some of the proofs is
Rσ,nW,T : Ω→ {pass, fail}, representing the result of observing n times after σ on
an arbitrary implementation of W tested by T .

The following result gives the probability that Rσ,nW,T is pass.

Lemma 1. Let W = 〈Aspec, w, perr, pfail〉 be a WFS, T a test suite for Aspec,
σ ∈ tracesAspec and n ∈ N, then

P[Rσ,nW,T = pass] = (1− pfail(σ))n · perr(σ) + 1− perr(σ) .

Proof.

P[Rσ,nW,T = pass] = P[Rσ,nW,T = pass | AW [σ] ⊆ Aspec[σ]] · P[AW [σ] ⊆ Aspec[σ]]

+ P[Rσ,nW,T = pass | AW [σ] 6⊆ Aspec[σ]] · P[AW [σ] 6⊆ Aspec[σ]]

= 1 · (1− perr(σ)) + (1− pfail(σ))n · perr(σ)

8

3 Risk

3.1 Test Evaluation with Respect to Risk

Having defined a formal framework, we can now define the measures of interest.
First of all, when a test suite passes, we want to estimate the number of faults
that remained undetected. To also incorporate the severity of these faults, we
define the risk of an implementation after passing a test suite as its expected
remaining fault weight, i.e., the expected number of remaining faults weighted
by their severity.

Definition 10 (Risk). Let W = 〈Aspec, w, perr, pfail〉 be a WFS, T a test suite
for Aspec, and E a correct execution of T . Then, the risk of an arbitrary im-
plementation of W after executing T yielded E is defined by

riskW (T,E) = E[w(AW) | RW,T = E] .

For this conditional expectation to be defined properly, P[RW,T = E] has to
be nonzero. However, since E is exactly the execution we observed, P[RW,T = E]
is obviously nonzero and consequently no extra restriction is imposed.

Due to nondeterminism, the absence of a failure during testing does not yet
prove its absence. Therefore, to compute the risk we need the probability that
a trace has been implemented incorrectly even though a test suite passes; its
posterior error probability.

Definition 11 (PEP). Let W = 〈Aspec, w, perr, pfail〉 be a WFS, T a test suite
for Aspec, E a correct execution of T , and σ ∈ tracesAspec . Then, the posterior
error probability (PEP) of σ, after T yielded E, is defined by

PEPW (σ, T,E) = P[AW [σ] 6⊆ Aspec[σ] | RW,T = E] .

Some executions of E may have performed an input action after σ, and
are therefore not able to detect incorrect behaviour directly after σ. Hence,
to compute the PEP we have to count the executions reaching σ and observ-
ing afterwards; this is precisely given by obs(σ,E). Keeping this in mind, the
following proposition can be obtained using Bayes’ formula.

Proposition 1. Let W = 〈Aspec, w, perr, pfail〉 be a WFS, T a test suite for
Aspec, E a correct execution of T , and σ ∈ tracesAspec . Then

PEPW (σ, T,E) =
(1− pfail(σ))obs(σ,E) · perr(σ)

(1− pfail(σ))obs(σ,E) · perr(σ) + 1− perr(σ)
.

Proof.

PEPW (σ, T,E)
= P[AW [σ] 6⊆ Aspec[σ] | RW,T = E]

= P[AW [σ] 6⊆ Aspec[σ] | Rσ,obs(σ,E)
W,T = pass]

9

=
P[Rσ,obs(σ,E)

W,T = pass | AW [σ] 6⊆ Aspec[σ]] · P[AW [σ] 6⊆ Aspec[σ]]

P[Rσ,obs(σ,E)
W,T = pass]

=
P[Rσ,obs(σ,E)

W,T = pass | AW [σ] 6⊆ Aspec[σ]] · perr(σ)

P[Rσ,obs(σ,E)
W,T = pass]

=
(1− pfail(σ))obs(σ,E) · perr(σ)

(1− pfail(σ))obs(σ,E) · perr(σ) + 1− perr(σ)

Note that Lemma 1 was used in the last step.

Since PEPW (σ, T,E) only depends on W , σ and obs(σ,E), we use the short-
hand notation PEPW (σ, n) to denote PEPW (σ, T,E) with obs(σ,E) = n.

It is not difficult to see that the value of riskW (T,E) in principle can be com-
puted by ranging over all traces of Aspec, summing their fault weight multiplied
by their PEP:

riskW (T,E) =
∑

σ∈tracesAspec

w(σ) · PEPW (σ, T,E) .

However, as there are infinitely many traces, this formula cannot be evaluated
in practice (unless truncation was used to specify w). To solve this, we first
compute the initial risk:

riskW (〈〉, 〈〉) =
∑

σ∈tracesAspec

w(σ) · perr(σ) .

In case of discounting this formula can easily be evaluated using a system of lin-
ear equations, very similar to how [10] computes the total coverage

∑
σ∈L∗ w(σ).

Now, for all traces σ ∈ obsT we subtract the risk reduction that was obtained
by E. Considering that the initial risk of every trace σ is w(σ) · perr(σ), the
following theorem easily follows.

Theorem 1. Let W = 〈Aspec, w, perr, pfail〉 be a WFS, T a test suite for Aspec,
and E a correct execution of T . Then

riskW (T,E) = riskW (〈〉, 〈〉)−∑
σ∈obsT

w(σ) · (perr(σ)− PEPW (σ, T,E)) .

Proof.

riskW (T,E)
= E[w(AW) | RW,T = E]

=
∑

[[Aimpl]]∈
IMPLAspec/∼

w([[Aimpl]]) · P[AW = [[Aimpl]] | RW,T = E]

10

=
∑

[[Aimpl]]∈
IMPLAspec/∼

 ∑
σ∈tracesAspec
Aimpl[σ] 6⊆Aspec[σ]

w(σ) · P[AW = [[Aimpl]] | RW,T = E]



=
∑

σ∈tracesAspec

w(σ)

 ∑
[[Aimpl]]∈IMPLAspec/∼
Aimpl[σ] 6⊆Aspec[σ]

P[AW = [[Aimpl]] | RW,T = E]


=

∑
σ∈tracesAspec

w(σ) · P[AW [σ] 6⊆ Aspec[σ] | RW,T = E]

=
∑

σ∈tracesAspec

w(σ) · PEPW (σ, T,E)

=
∑

σ∈tracesAspec

w(σ) · (perr(σ)− (perr(σ)− PEPW (σ, T,E)))

= riskW (〈〉, 〈〉)−
∑

σ∈tracesAspec

w(σ) · (perr(σ)− PEPW (σ, T,E))

= riskW (〈〉, 〈〉)−
∑

σ∈obsT

w(σ) · (perr(σ)− PEPW (σ, T,E))

Complexity. The complexity of risk evaluation is in O(n3 + p log(m)), with n
the number of states of Aspec, m the size of T , and p the size of obsT .

The term n3 comes from calculating riskW (〈〉, 〈〉), which is shown to be of
this complexity in [10]. Then, the summation yields p summands, each of them
requiring some exponentiations (worst case in O(log(m))).

Example 5. Again consider the WFS of the previous examples. Assume that
discounting was defined such that riskW (〈〉, 〈〉) = 10.

Let T be the test suite 〈t, t〉, with t the test case of Figure 1(b). Suppose
that T is executed, yielding E = 〈(20ct? tea!), (20ct? coffee! δ)〉. To determine
riskW (T,E), we calculate the risk reduction obtained by E, and subtract this
from the initial risk (following Theorem 1). As risk can only be reduced by
observing traces, we only have to consider the traces that are in the set obsT =
{(20ct?), (20ct? coffee!)}.

Since E observed twice after σ1 = (20ct?), the risk reduction by this trace is

w(σ1) · (perr(σ1)− PEPW (σ1, 2))

= (25 · 0.9)
(

0.05− 0.62 · 0.05
0.62 · 0.05 + 1− 0.05

)
= 0.707.

11

Since E observed once after σ2 = (20ct? coffee!), the risk reduction by this trace
is

w(σ2) · (perr(σ2)− PEPW (σ2, 1))

= (40 · 0.92)
(

0.01− 0.61 · 0.01
0.61 · 0.01 + 1− 0.01

)
= 0.129.

Thus, we obtain

riskW (T,E) = 10− (0.707 + 0.129) = 9.164 .

3.2 Estimating Output Behaviour to Predict Risk Reduc-
tion

Due to nondeterministic behaviour, risk has been defined for IOLTSs based
on a test suite and an execution. However, to find an optimal test suite, we
need to estimate risk without knowing the execution in advance. It is therefore
necessary to estimate output behaviour, for which we extend the WFS model
to also include output probabilities pout.

Definition 12 (WFS+). A WFS+ is a tuple W = 〈Aspec, w, perr, pfail, pout〉,
where the first four elements constitute a WFS, and pout : tracesAspec ×LO →
[0, 1] is a function assigning to each trace σ and output action a! the probability
pout(σ, a!) that the system provides an a! after σ, given that no failures occur.

Given a test case t and a trace σ ∈ t, the probability preach(σ) of actually
reaching σ when t is executed (given that no failures occur) can easily be cal-
culated using pout. As inputs are chosen by the test case, we set pout(σ, a?) = 1
for all traces σ and input actions a? ∈ LI.

Proposition 2. Let W = 〈Aspec, w, perr, pfail, pout〉 be a WFS+ and t a test case
for Aspec, then for all σ = a1a2 . . . an ∈ t

preach(σ) =
n∏
i=1

pout(a1 . . . ai−1, ai) ,

using the convention that a1 . . . a0 is the empty string ε.

Proof. We will proof the formula by induction on the length of σ.
When |σ| = 0, then σ = ε, and obviously it is reached when t is executed, so

preach(σ) = 1. Also,
∏n
i=1 pout(a1 . . . ai−1, ai) =

∏0
i=1 pout(a1 . . . ai−1, ai) = 1,

as this is the empty product.
Now assume that for some σ = a1a2 . . . ak it holds that

preach(σ) =
k∏
i=1

pout(a1 . . . ai−1, ai) .

12

Then, we still need to prove that

preach(σak+1) =
k+1∏
i=1

pout(a1 . . . ai−1, ai) .

We distinguish between the cases that ak+1 is an input action and that it is an
output action.

First, let ak+1 be an input action. Given that σ has already been reached,
the probability that ak+1 happens is 1, as the test case is assumed to always be
able to perform the input it chooses. Therefore, preach(σak+1) should be equal
to preach(σ). Indeed,

k+1∏
i=1

pout(a1 . . . ai−1, ai) =
k∏
i=1

pout(a1 . . . ai−1, ai) · pout(σ, ak+1)

= preach(σ) · pout(σ, ak+1)
= preach(σ) · 1
= preach(σ)

so the formula is correct.
Second, let ak+1 be an output action. Given that σ has already been reached,

the probability that ak+1 is observed is by definition exactly pout(σ, ak+1).
Therefore, preach(σak+1) should be equal to preach(σ) · pout(σ, ak+1). Indeed,

k+1∏
i=1

pout(a1 . . . ai−1, ai) =
k∏
i=1

pout(a1 . . . ai−1, ai) · pout(σ, ak+1)

= preach(σ) · pout(σ, ak+1)

so also in this case the formula is correct. Therefore,

preach(σak+1) =
k+1∏
i=1

pout(a1 . . . ai−1, ai)

in all cases, which completes the proof.

Now, letting riskW (T) be the random variable representing the expected risk
after a random execution of T , the following result holds.

Theorem 2. Let W = 〈Aspec, w, perr, pfail, pout〉 be a WFS+ and T a test suite
for Aspec. Then

E[riskW (T)] = riskW (〈〉, 〈〉)−
∑

σ∈obsT

w(σ)· obs(σ,T)∑
i=0

(
obs(σ, T)

i

)
· preach(σ)i·

(1− preach(σ))obs(σ,T)−i · (perr(σ)− PEPW (σ, i))

 .

13

fail pass

passfail fail

x20ct? (1.0)

(0.6) coffee! xδ (0.0) tea! (0.4)

(0.0) coffee! xδ (1.0) tea! (0.0)

Figure 3: A test case with output probabilities

Proof (sketch). To obtain this formula, we started with Theorem 1 and replaced
perr(σ)−PEPW (σ, T,E) (the error probability reduction for E) by the expected
error probability reduction for an arbitrary execution. This reduction depends
on the number of times the execution observes after σ, which is by definition
between 0 and obs(σ, T). The probability of observing i times is equal to obtain-
ing i successes in a binomially distributed experiment with n = obs(σ, T) and
p = preach(σ). Using these observations, Theorem 1, and the familiar formula
for the binomial distribution, we obtain Theorem 2.

Complexity. The complexity of risk prediction is in O(n3 + pm log(m) + p3),
with n the number of states of Aspec, m the size of T , and p the size of obsT .

Again, the term n3 comes from calculating riskW (〈〉, 〈〉). Then, the outer
summation yields p summands. For each of these the inner summation yields at
most m summands, each of them requiring some exponentiations (worst case in
O(log(m))). Finally, the binomials

(
s
0

)
, . . . ,

(
s
s

)
are required for all s ∈ {1, . . . , p}.

Since each of them requires at most 2s multiplications, this is in O(p3).

Example 6. Using the WFS W and test suite T of the previous examples again,
we compute E[riskW (T)]. First, we specify the relevant output probabilities to
make it into a WFS+; see Figure 3. Since we assume that test suite executions
pass (otherwise we improve the system and test again), the incorrect outputs
have been given probability 0.

Now, we can easily calculate preach(20ct?) = 1.0, and preach(20ct? coffee!) =
1.0 · 0.6 = 0.6. Using Theorem 2, we obtain the following.

E[riskW (T)]
= riskW (〈〉, 〈〉)−

∑
σ∈obsT

w(σ) ·

obs(σ,T)∑
i=0

(
obs(σ, T)

i

)
· preach(σ)i·

(1− preach(σ))obs(σ,T)−i · (perr(σ)− PEPW (σ, i))



14

= 10− 25 · 0.9 ·

(
2∑
i=0

(
2
i

)
· 1i · (1− 1)2−i · (0.05− PEPW (20ct?, i))

)

− 40 · 0.92 ·

(
2∑
i=0

(
2
i

)
· 0.6i · (1− 0.6)2−i · (0.01− PEPW (20ct? coffee!, i))

)
= 10− 22.5 ·

(
12 · 00 · (0.05− PEPW (20ct?, 2))

)
− 32.4 ·

(
0.60 · 0.42 · (0.01− PEPW (20ct? coffee!, 0))

+ 2 · 0.61 · 0.41 · (0.01− PEPW (20ct? coffee!, 1))

+ 0.62 · 0.40 · (0.01− PEPW (20ct? coffee!, 2)))
= 10− 22.5 · (0.05− 0.0186)

− 32.4 · (0.16 · (0.01− 0.01) + 0.48 · (0.01− 0.0060) + 0.36 · (0.01− 0.0036))
= 10− 22.5 · 0.0314− 32.4 · 0.0042 = 10− 0.707− 0.136 = 9.157 .

The risk that was calculated in Example 5 is indeed almost equal to this expected
value.

3.3 Test Optimisation with Respect to Risk

Using risk prediction we can now compute optimal test suites with respect to
risk. Let W = 〈A, w, perr, pfail, pout〉 be a WFS+, T a test suite forA, σ a trace of
A, and assume that obs(σ, T) = n. Since each trace σ contributes w(σ) · perr(σ)
to riskW (〈〉, 〈〉), Theorem 2 implies that the contribution of σ to the expected
risk after T passes is

c(σ, n) = w(σ) ·
n∑
i=0

(
n

i

)
preach(σ)i(1− preach(σ))n−i · PEPW (σ, i) .

(This is easily established using the fact that
∑n
i=0

(
n
i

)
pi(1−p)n−ix = x for all n

and p.) Note that c(σ, n) only takes into account the contribution of σ itself, not
of its prefixes. It is easy to see that adding a new test case to T that observes
after σ yields an expected risk reduction (ERR) of r(σ, n) = c(σ, n)−c(σ, n+1).

Using these insights, we can now construct

T opt-risk
W,k,d = arg min

T=〈t1,...,tk〉
E[riskW (T)] ,

i.e., a test suite of size k with minimal expected risk. As an extra restriction,
we limit the depth of each test case to d to obtain a finite test suite.

To compute the best test case (i.e., the one having maximal ERR) of depth
d to add to a test suite T , we first derive a recursive equation for the maximal
ERR obtained by such a test case. To express this as a function of the maximal
ERR of its sub test cases of depth d − 1, we also have to keep track of the
trace seen thus far. We therefore let MT (σ, d′) denote the maximal ERR to be

15

obtained by a sub test case of depth d′ with history σ. Note that we are looking
for MT (ε, d).

For d′ = 0, trivially MT (σ, d′) = 0. For an arbitrary d′ > 0, MT (σ, d′)
is calculated inductively by looking at the first step of the test case. Starting
with an input a? ∈ LI such that σa? ∈ tracesA, no ERR is obtained directly
and we are left with MT (σa?, d′ − 1). Starting with observation, an ERR of
r(σ, obs(σ, T)) is obtained. Then, some output b! is provided, leaving us with
MT (σb!, d′ − 1). As the probability of choosing each individual b! is already
accounted for in c(σ, n), no weighted average is taken.

Formalising these observations, we obtain

MT (σ, d′) =
{

0 if d′ = 0
max (doInput, observe) if d′ > 0 ,

where

doInput = max
a?∈LI

σa?∈tracesA

MT (σa?, d′ − 1) ,

observe = r(σ, obs(σ, T)) +
∑
b!∈LO

σb!∈tracesA

MT (σb!, d′ − 1) .

To construct T opt-risk
W,k,d , we start with T = 〈〉 and compute MT (ε, d): the

maximum expected risk reduction to be obtained by a test case of depth d.
Algorithmically, we start bottom-up by calculating MT (σd−1, 1) for all σd−1 ∈
tracesA of length d−1. Based on these values, we can calculateMT (σd−2, 2) for
all σd−2 ∈ tracesA of length d− 2. Working our way up, we arrive atMT (ε, d).
During the calculations we record for eachMT (ρ, l) whether it was obtained by
observation or an input (and which one).

Now, the first step of the best test case t1 is the action (or observation) that
was chosen to maximise MT (ε, d). Then, suppose that a ∈ L was performed,
we do an input or observe, according to which was chosen forMT (a, d−1), and
so on, until depth d has been reached.

After having set T = {t1}, the best test case t2 to add to T can be found by
repeating the procedure described above. Since only a part of the state space
changes, this can be calculated efficiently. We just continue in this way until
|T | = k and then set T opt-risk

W,k,d = T .

3.4 Formal Description and Correctness Proof

The entire procedure is shown formally in Algorithm 1 on page 17. It uses a
function to construct a test case based on theMT -values, which is described by
Algorithm 2. Note that the construction is nondeterministic if several inputs
all yield the same maximum expected risk reduction. Indeed, in this case any
choice among these actions is valid.

The following two results are needed to prove Theorem 3, stating the cor-
rectness of our algorithm.

16

Algorithm 1: Computing an optimal test suite of depth d and size k

Input: A WFS+ W = 〈Aspec, w, perr, pfail, pout〉, a size k and a depth d

Output: A test suite T opt-risk
W,k,d containing k test cases of depth d, which

has minimal expected risk

Initialization
Set T = 〈〉 and n = d− 11

For all traces σ ∈ tracesAspec of length d, set MT (σ, 0) = 02

Construction
while |T | < k do3

while n ≥ 0 do4

For all traces σ ∈ tracesAspec of length n, compute5

MT (σ, d− n) = max (doInput, observe)

where

doInput = max
a?∈LI

σa?∈tracesAspec

MT (σa?, d− n− 1)

observe = r(σ, obs(σ, T)) +
∑
b!∈LO

σb!∈tracesA

MT (σb!, d− n− 1)

r(σ,m) = c(σ,m)− c(σ,m+ 1)

c(σ,m) = w(σ) ·
m∑
i=0

(
m

i

)
preach(σ)i(1− preach(σ))m−i·

PEPW (σ, i)

and set M′T (σ, d− n) =6 
{⊥} , if MT (σ, d− n) = observe

arg max
a?∈LI

σa?∈tracesAspec

MT (σa?, d− n− 1) , otherwise

n = n− 17

end
t = construct(ε, d)8

Set T = T + {t}9

end
Set T opt-risk

W,k,d = T10

17

Algorithm 2: The construct function
construct(σ, d) =

∅ if d = 0
{σb! | b! ∈ LO ∧ σb! 6∈ tracesA} ∪ if d > 0 ∧M′T (σ, d) = {⊥}⋃
b!∈LO

σb!∈tracesA

(
{σb!} ∪ construct(σb!, d− 1)

)
σa? ∪ construct(σa?, d− 1) if d > 0 ∧ a? ∈M′T (σ, d)

Lemma 2. Let W = 〈Aspec, w, perr, pfail, pout〉 be a WFS+, d some depth and T
some test suite, and let the inner loop of Algorithm 1 be executed once. Then,
given any n ∈ {0, 1, . . . , d}, for all traces σ ∈ tracesAspec of length n we have
that MT (σ, d − n) contains the maximal ERR by a test case of depth d − n
having history σ. Furthermore, M′T (σ, d − n) contains either ⊥ in case this
maximal ERR can be obtained by observing, or the maximising actions in case
this maximal ERR can be obtained by performing an input.

Proof. We prove the first part by (backwards) induction on n. For the base case
n = d, line 2 results in MT (σ, d − n) = 0 for all σ ∈ tracesAspec of length n,
which is trivially correct. After all, the only test case of depth 0 is the empty
test case, which obviously does not reduce the risk.

Now assume that for some n ∈ {1, 2, . . . , d} indeed MT (σ, d − n) is the
maximal ERR by a test case of depth d − n having history σ, for all σ ∈
tracesAspec of length n. Let σ′ ∈ tracesAspec be an arbitrary trace of length
n − 1. Then, MT (σ′, d − (n − 1)) = max (doInput, observe) by line 5. By
the induction hypothesis, doInput is the maximal ERR by a test case of depth
d− (n− 1) having history σ′, when the first step is an input. Similarly, observe
is the maximal ERR by a test case of depth d − (n − 1) having history σ′,
when the first step is an observation. Since these are the only possibilities and
a maximum over them is taken, MT (σ′, d− (n− 1)) is the maximal ERR by a
test case of depth d− (n− 1) having history σ′.

The fact thatM′T (σ, d−n) contains either ⊥ in case the maximal ERR can
be obtained by observing, or the maximising actions in case the maximal ERR
can be obtained by performing an input, follows directly from its definition on
line 6.

Lemma 3. Let W = 〈Aspec, w, perr, pfail, pout〉 be a WFS+, d some depth and T
some test suite. Assume that MT (σ, d− n) and M′T (σ, d− n) are as described
by Lemma 2. Then, the construct function of Algorithm 2, given the arguments
ε and d, produces a test case of depth d which has maximal ERR for T .

Proof. Assume that M′T (ε, d) = ⊥. This implies that the maximal ERR by
a (history-less) test case of depth d is obtained by observing in the first step.
Indeed, by the second clause of construct an observation is added to the resulting
test case. Moreover, for each correct branch the optimal sub test case of depth

18

d − 1 is added. On the other hand, if M′T (ε, d) 6= ⊥, this implies that the
maximal ERR by a (history-less) test case of depth d is obtained by performing
an input, and that these maximising inputs are contained in M′T (ε, d). Indeed,
by the third clause of construct one of these maximising inputs is chosen, and
the optimal sub test case of depth d− 1 below it is added.

By induction (noting that for d = 0 we stop, since no traces have to be
added anymore), the lemma easily follows.

Theorem 3. Let W = 〈Aspec, w, perr, pfail, pout〉 be a WFS+, d some depth, and
k some natural number. Then, after executing Algorithm 1, the set T opt-risk

W,k,d is
a test suite containing k test cases of depth d, which has minimal expected risk.

Proof. By the first line of the algorithm, initially T = 〈〉. Combining Lemma 2
and Lemma 3, it follows that the first time the inner loop finishes, line 8 will
assign a test case of depth d which has maximal ERR for T to t. In line 9 this
test case is added to T , making T the test suite containing 1 test case of depth
d, which has minimal expected risk.

By induction on the number of iterations of the outer loop, and by the
condition on line 3, the theorem now follows.

Complexity. Note that the above method is very similar to history-dependent
backwards induction, known from Markov decision theory [19]. The complexity
of finding each test case to add to T is therefore exponential in its depth, and
because of history-dependence cannot be improved to polynomial complexity.

Example 7. Using the WFS+ W of the previous examples once more, we cal-
culate the optimal test suite T opt-risk

W,2,3 of size 2 and depth 3. We still assume
preach(20ct? coffee!) = 0.6 and preach(20ct? tea!) = 0.4, and a discount rate of
λ = 0.9 for short traces.

We first calculate MT (σ2, 1) for all traces of length 2:

MT (δ δ, 1) = max
(
MT (δ δ 10ct?, 0),MT (δ δ 20ct?, 0),

r(δ δ, 0) +MT (δ δ δ, 0)
)

= max(0, 0, 0.129) = 0.129
MT (δ 10ct?, 1) = · · · = 0.683
MT (δ 20ct?, 1) = · · · = 0.393

MT (10ct? tea!, 1) = · · · = 0.129
MT (20ct? tea!, 1) = · · · = 0.052

MT (20ct? coffee!, 1) = · · · = 0.077

Note that this confirms the intuition that it is best to observe in the final step,
since performing an input has no effect on the risk. Continuing, we calculate

19

fail fail

passfail fail

x10ct?

coffee! xδ tea!

coffee! xδ tea!

(a) The first test case

fail fail

pass fail pass

x10ct?

coffee! xδ tea!

coffee! xδ tea!

(b) The second test case

Figure 4: An optimal test suite

MT (δ, 2) = max
(
MT (δ 10ct?, 1),MT (δ 20ct?, 1),

r(δ, 0) +MT (δ δ, 1)
)

= max(0.683, 0.393, 0.143 + 0.129) = 0.683

MT (10ct?, 2) = max
(
r(10ct?, 0) +MT (10ct? tea!, 1)

)
= max(0.759 + 0.129) = 0.889

MT (20ct?, 2) = max
(
r(20ct?, 0) +MT (20ct? tea!, 1)

+MT (20ct? coffee!, 1)
)

= max(0.436 + 0.052 + 0.077) = 0.565

MT (ε, 3) = max
(
MT (10ct?, 2),MT (20ct?, 2),

r(ε, 0) +MT (δ, 2)
)

= max(0.889, 0.565, 0.159 + 0.683) = 0.889

Apparently, the maximum expected risk reduction that can be obtained by a
test case of depth 3 is 0.889. Based on the calculations above, we can deduce
the corresponding test case, which is depicted in Figure 4(a).

To find the second test case to include in T , we perform the same calcula-
tions, only now using r(10ct?, 1) and r(10ct? tea!, 1) instead of r(10ct?, 0) and
r(10ct? tea!, 0), since obs(σ, T) is now 1 for them. In fact, only a part of the
calculations has to be repeated.

We find the test case shown in Figure 4(b), which yields an additional ex-
pected risk reduction of 0.842. As this calculation uses the fact that the first test
case was already present, the values can just be added to find that the optimal
test suite of size two has an expected risk reduction of 0.889+0.842 = 1.731.

20

4 Actual Coverage

Whereas risk gives us information about the entire system, coverage only relates
to the part of a system we tested.

Basically, we define the absolute actual coverage (absCov) of a test suite T
as the accumulated fault weight of the traces that are known to be implemented
correctly after T passes. However, due to nondeterminism we often only reduce
the probability of the presence of faults, so we need a more precise notion. We
therefore introduce relative error probability reduction (REPR) as the extent
to which the error probability of a trace decreases as a result of passing a test
suite. Then, absCov is defined as the sum of all fault weights, each weighted by
the corresponding REPR.

To assess the quality of a test suite, we calculate its absolute actual coverage
relative to the total amount of fault weight that could potentially be present in
the system. This measure will be called its relative actual coverage (relCov).
(See [10] for an algorithm to compute totCov efficiently).

Definition 13 (Coverage measures). Let W = 〈Aspec, w, perr, pfail〉 be a WFS,
T a test suite for Aspec, and E a correct execution of T . Then we define

REPRW (σ, T,E) =
perr(σ)− PEPW (σ, T,E)

perr(σ)
;

absCovW (T,E) =
∑

σ∈tracesAspec

w(σ) · REPRW (σ, T,E) ;

totCovW =
∑

σ∈tracesAspec

w(σ) ;

relCovW (T) =
absCovW (T)

totCovW
.

Note that since weight functions never sum up to zero or infinity, relative
actual coverage is properly defined.

Using Proposition 1, the following result can easily be obtained, providing
a formula for computing actual coverage. Note that it reduced to a finite sum,
since the traces not in obsT have no REPR and can therefore be omitted.

Theorem 4. Let W = 〈Aspec, w, perr, pfail〉 be a WFS, T a test suite for Aspec,
and E a correct execution of T . Then

absCovW (T,E)

=
∑

σ∈obsT

w(σ)
(

1− (1− pfail(σ))obs(σ,E)

1− perr(σ) + (1− pfail(σ))obs(σ,E) · perr(σ)

)
.

Proof.

absCovW (T,E)

=
∑

σ∈tracesAspec

w(σ) · REPRW (σ, T,E)

21

=
∑

σ∈tracesAspec

w(σ) · perr(σ)− PEPW (σ, T,E)
perr(σ)

=
∑

σ∈tracesAspec

w(σ) ·
perr(σ)− (1−pfail(σ))obs(σ,E)·perr(σ)

(1−pfail(σ))obs(σ,E)·perr(σ)+1−perr(σ)

perr(σ)

=
∑

σ∈tracesAspec

w(σ)
(

1− (1− pfail(σ))obs(σ,E)

(1− pfail(σ))obs(σ,E) · perr(σ) + 1− perr(σ)

)

=
∑

σ∈obsT

w(σ)
(

1− (1− pfail(σ))obs(σ,E)

(1− pfail(σ))obs(σ,E) · perr(σ) + 1− perr(σ)

)

=
∑

σ∈obsT

w(σ)
(

1− (1− pfail(σ))obs(σ,E)

1− perr(σ) + (1− pfail(σ))obs(σ,E) · perr(σ)

)
The one but last step follows from the fact that obs(σ,E) = 0 for all σ 6∈ obsT ,
making the term between parenthesis 0.

Optimisation with respect to actual coverage can be done in exactly the
same way as optimisation with respect to risk, only using expected coverage
increase instead of expected risk reduction.

5 Conclusions and Future Work

While testing is an important part of today’s software development process, little
research has been devoted to the interpretation of a successful testing process.
In this paper, we introduced a weighted fault specification (WFS) to describe the
required behaviour of a system and the estimation of its probabilistic behaviour.
Based on such a WFS, we presented two measures: risk and actual coverage.
Risk denotes the confidence in the system after testing is successful, whereas
actual coverage denotes how much was tested.

We presented a method to compute the risk of a system after it successfully
passes a test suite, as well as a way to calculate the quality of a given test
suite with respect to risk. We also gave an optimisation strategy enabling the
tester to obtain a test suite of a given size that will obtain minimal risk. All are
easily adaptable to work with actual coverage. Although we made some strict
assumptions on error independence, we think that a thorough understanding of
simple models is a useful start when tackling these complicated problems.

Our work gives rise to several directions for future research. First, it is
crucial to validate our framework by developing tool support and performing
case studies. Second, it seems useful to include fault dependencies in our model.
Third, the possibilities of on-the-fly test derivations (e.g., as performed by the
tool TorX [20]) based on risk or actual coverage could be investigated. This
may yield a tool that, during testing, calculates probabilities and decides how
to test optimally. Finally, our framework may be used to study the sensitivity

22

of the probabilities, validating potential simplifying approximations for risk and
actual coverage.

References

[1] M. Newman, “Software errors cost U.S. economy 59.5 billion annually,
NIST assesses technical needs of industry to improve software-testing,”
Press Release, http://www.nist.gov/public affairs/releases/n02-10.htm,
2002.

[2] T. Ball, “A Theory of Predicate-Complete Test Coverage and Generation,”
in Proceedings of the 3rd International Symposium on Formal Methods for
Components and Objects (FMCO ’04), ser. Lecture Notes in Computer
Science, vol. 3657. Springer, 2004, pp. 1–22.

[3] G. J. Myers, C. Sandler, T. Badgett, and T. M. Thomas, The Art of Soft-
ware Testing, Second Edition. Wiley, 2004.

[4] D. Lee and M. Yannakakis, “Principles and methods of testing finite state
machines - a survey,” Proceedings of the IEEE, vol. 84, no. 8, pp. 1090–1123,
1996.

[5] L. Nachmanson, M. Veanes, W. Schulte, N. Tillmann, and W. Grieskamp,
“Optimal strategies for testing nondeterministic systems,” SIGSOFT Soft-
ware Engineering Notes, vol. 29, no. 4, pp. 55–64, 2004.

[6] H. Ural, “Formal methods for test sequence generation,” Computer Com-
munications, vol. 15, no. 5, pp. 311–325, 1992.

[7] F. Redmill, “Exploring risk-based testing and its implications,” Software
Testing, Verification and Reliability, vol. 14, no. 1, pp. 3–15, 2004.

[8] J. Bach, “Heuristic risk-based testing,” Software Testing and Quality En-
gineering Magazine, November/December 1999.

[9] S. Amland, “Risk-based testing: risk analysis fundamentals and metrics
for software testing including a financial application case study,” Journal
of Systems and Software, vol. 53, no. 3, pp. 287–295, 2000.

[10] L. Brandán Briones, E. Brinksma, and M. I. A. Stoelinga, “A seman-
tic framework for test coverage,” in Proceedings of the 4th International
Symposium on Automated Technology for Verification and Analysis (ATVA
’06), ser. Lecture Notes in Computer Science, vol. 4218. Springer, 2006,
pp. 399–414.

[11] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting fault
incidence using software change history,” IEEE Transactions on Software
Engineering, vol. 26, no. 7, pp. 653–661, 2000.

[12] T. J. McCabe, “A complexity measure,” IEEE Transactions on Software
Engineering, vol. 2, no. 4, pp. 308–320, 1976.

[13] M. H. Halstead, Elements of Software Science. Elsevier, 1977.
[14] Y. K. Malaiya and J. Denton, “Requirements volatility and defect density,”

in Proceedings of the 10th International Symposium on Software Reliability
Engineering (ISSRE ’99). IEEE, 1999, pp. 285–294.

23

[15] K. W. Miller, L. J. Morell, R. E. Noonan, S. K. Park, D. M. Nicol, B. W.
Murrill, and M. Voas, “Estimating the probability of failure when testing
reveals no failures,” IEEE Transactions on Software Engineering, vol. 18,
no. 1, pp. 33–43, 1992.

[16] J. Voas, L. Morell, and K. Miller, “Predicting where faults can hide from
testing,” IEEE Software, vol. 8, no. 2, pp. 41–48, 1991.

[17] A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, Sensitivity Analysis
in Practice: A Guide to Assessing Scientific Models. Halsted, 2004.

[18] G. J. Tretmans, “Test Generation with Inputs, Outputs and Repetitive
Quiescence,” Software—Concepts and Tools, vol. 17, no. 3, pp. 103–120,
1996.

[19] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. Wiley, 2005.

[20] A. Belinfante, J. Feenstra, R. G. de Vries, J. Tretmans, N. Goga, L. M. G.
Feijs, S. Mauw, and L. Heerink, “Formal test automation: A simple ex-
periment,” in Proceedings of the 12th International Workshop on Testing
Communicating Systems (IWTCS ’99), ser. IFIP Conference Proceedings,
vol. 147. Kluwer, 1999, pp. 179–196.

24

