An extended test coverage framework

From potential to actual coverage

Mark Timmer

March 12, 2008
Mark Timmer
An extended test coverage framework
Motivation for research on testing

- Software is getting more and more complex
- Bugs cost a lot of money
- Testing is a large part of software development
Introduction

Motivation for research on testing
- Software is getting more and more complex
- Bugs cost a lot of money
- Testing is a large part of software development

Motivation for research on test coverage
- Testing is inherently incomplete
- A notion of *quality* of a test suite is necessary
Motivation for research on testing

- Software is getting more and more complex
- Bugs cost a lot of money
- Testing is a large part of software development

Motivation for research on test coverage

- Testing is inherently incomplete
- A notion of quality of a test suite is necessary

Motivation for my research project

- Previous work by Laura Brandán Briones, Marielle and Ed
- Ideas for several improvements
Preliminaries – labeled transition systems

Definition LTSs

LTS \(A = \langle S, s^0, L, \Delta \rangle \), such that

- \(S \): set of states
- \(s^0 \): initial state
- \(L \): set of actions (partitioned into input actions and output actions)
- \(\Delta \): transition relation (assumed deterministic)
Definition LTSs

LTS $\mathcal{A} = \langle S, s^0, L, \Delta \rangle$, such that

- S: set of states
- s^0: initial state
- L: set of actions (partitioned into input actions and output actions)
- Δ: transition relation (assumed deterministic)
Preliminaries – test cases for LTSs

Perform an input
Observe all outputs
Always stop after an error

Mark Timmer
An extended test coverage framework
Perform an input
Observe all outputs
Always stop after an error

Mark Timmer
An extended test coverage framework
Perform an input
Preliminaries – test cases for LTSs

- Perform an input
- Observe all outputs
Preliminaries – test cases for LTSs

- Perform an input
- Observe all outputs
- Always stop after an error

Mark Timmer
An extended test coverage framework
Preliminaries – Weighted fault models (WFM}s)

Restriction on weighted fault models

\[
0 < \sum_{\sigma \in L^*} f(\sigma) < \infty
\]
Preliminaries – Weighted fault models (WFMs)

\[
f(\text{coffee!}) = 10
\]

Restriction on weighted fault models

\[0 < \sum_{\sigma \in \mathcal{L}^*} f(\sigma) < \infty\]
Preliminaries – Weighted fault models (WFMs)

\[f(\text{coffee!}) = 10 \]
\[f(10\text{ct? tea!}) = 0 \]

Restriction on weighted fault models

\[0 < \sum_{\sigma \in L^*} f(\sigma) < \infty \]
Preliminaries – Weighted fault models (WFM)

Weighted fault models (WFMs) are a formalism for modeling the behavior of systems where the transitions between states are associated with weights. These weights can represent various properties, such as cost or reliability. The diagram illustrates a simple WFM with three states: s_1, s_0, and s_2. The states are connected by transitions labeled with "20ct?", "10ct?", and "δ", which stand for "20 cents?", "10 cents?", and "delta", respectively. The weight function f assigns values to the transitions, indicating the cost or another measure associated with each transition. For example:

- $f(coffee!) = 10$
- $f(10ct? tea!) = 0$
- $f(10ct? coffee!) = 5$

These values can be used to evaluate the overall cost or weight of a particular sequence of transitions within the system.

An extended test coverage framework

Mark Timmer
Preliminaries – Weighted fault models (WFM)

Restriction on weighted fault models

0 < \sum_{\sigma \in L^*} f(\sigma) < \infty

f(coffee!) = 10
f(10ct? tea!) = 0
f(10ct? coffee!) = 5
f(10ct? tea! 10ct? coffee!) = 3
Preliminaries – Weighted fault models (WFMs)

Restriction on weighted fault models

\[0 < \sum_{\sigma \in L^*} f(\sigma) < \infty \]

\[
\begin{align*}
 f(\text{coffee!}) &= 10 \\
 f(10\text{ct? tea!}) &= 0 \\
 f(10\text{ct? coffee!}) &= 5 \\
 f(10\text{ct? tea! 10ct? coffee!}) &= 3
\end{align*}
\]
Mark Timmer
An extended test coverage framework
Preliminaries – Weighted fault models (WFMs)

An extended test coverage framework
Assume \[\sum_{\sigma \in L^*} f(\sigma) = 150 \]

Mark Timmer
An extended test coverage framework
Assume \(\sum_{\sigma \in L^*} f(\sigma) = 150 \)

\(tot\text{Cov}_p = 150 \)
Assume $\sum_{\sigma \in L^*} f(\sigma) = 150$

$totCov_p = 150$

$absCov_p = 7 + 4 + 6 + 9 + 2 = 28$
Assume $\sum_{\sigma \in L^*} f(\sigma) = 150$

$totCov_p = 150$

$absCov_p = 7 + 4 + 6 + 9 + 2 = 28$

$relCov_p = \frac{28}{150} = 0.19$
Mark Timmer

An extended test coverage framework
Preliminaries – Weighted fault models (WFMAs)

\[\text{absCov}_p = 7 + 4 + 6 + 9 + 2 + 11 + 6 = 45 \]
Definition of fault automata (FAs)

Fault automaton: an LTS and a function \(r \) assigning these weights.

We require that \(r(s, a) = 0 \) for correct outputs.

Mark Timmer
An extended test coverage framework
Preliminaries - Fault automata

Definition of fault automata (FAs)

Fault automaton: an LTS and a function r assigning these weights. We require that $r(s, a) = 0$ for correct outputs.
Definition of fault automata (FAs)

Fault automaton: an LTS and a function r assigning these weights. We require that $r(s, a!) = 0$ for correct outputs.
Problem: infinite traces over FA, so \(\sum_{\sigma \in L^*} f(\sigma) \neq \infty \)
From fault automaton to weighted fault model

Problem: infinite traces over FA, so $\sum_{\sigma \in L^*} f(\sigma) \not< \infty$

Solutions:
- Discard traces with length larger than some threshold
- Discount error weights by their depth
Problem: infinite traces over FA, so $\sum_{\sigma \in L^*} f(\sigma) \not< \infty$

Solutions:
- Discard traces with length larger than some threshold
- Discount error weights by their *depth*

Not relevant for my work.
Limitations of potential coverage

Previous work on potential coverage:

\[\text{absCov}(f,t) = 28 \]

Limitations of potential coverage

Errors that are potentially covered

All these errors are not actually covered in every execution

What if the test case is executed multiple times?

Actual coverage

What is actually covered

Mark Timmer

An extended test coverage framework
Limitations of potential coverage

Previous work on potential coverage:
\[\text{absCov}_p(f, t) = 28 \]
Limitations of potential coverage

Previous work on potential coverage:
\(\text{absCov}_p(f, t) = 28 \)

Limitations of potential coverage

- Errors that are \textit{potentially} covered
Limitations of potential coverage

Previous work on potential coverage:
\(absCov_p(f, t) = 28 \)

- Errors that are *potentially* covered
- All these errors are not actually covered in every execution
Limitations of potential coverage

Previous work on potential coverage:
\[\text{absCov}_p(f, t) = 28 \]

Limitations of potential coverage

- Errors that are potentially covered
- All these errors are not actually covered in every execution
- What if the test case is executed multiple times?
Limitations of potential coverage

Previous work on potential coverage: $\text{absCov}_p(f, t) = 28$

Limitations of potential coverage

- Errors that are potentially covered
- All these errors are not actually covered in every execution
- What if the test case is executed multiple times?

Actual coverage

- What is actually covered
Limitations of potential coverage

Actual coverage

- Execution coverage:
 Faults covered when observing a specific execution

Mark Timmer
An extended test coverage framework
Limitations of potential coverage

Actual coverage

- Execution coverage: Faults covered when observing a specific execution
- Actual coverage: Probability mass distribution expressing execution coverage of single or sequence of executions
Limitations of potential coverage

Actual coverage

- Execution coverage: Faults covered when observing a specific execution
- Actual coverage: Probability mass distribution expressing execution coverage of single or sequence of executions
- Expected actual coverage

Mark Timmer
An extended test coverage framework
Requirements for actual coverage

Actual coverage
Probability mass distribution expressing execution coverage of single or sequence of executions

- Indication of confidence in our knowledge on error presence
Requirements for actual coverage

Actual coverage

Probability mass distribution expressing execution coverage of single or sequence of executions

- Indication of confidence in our knowledge on error presence
- Include number of executions. More executions, more coverage
Requirements for actual coverage

Actual coverage

Probability mass distribution expressing execution coverage of single or sequence of executions

- Indication of confidence in our knowledge on error presence
- Include number of executions. More executions, more coverage
- For \(n \to \infty \) executions, equal to potential coverage
Requirements for actual coverage

Actual coverage

Probability mass distribution expressing execution coverage of single or sequence of executions

- Indication of confidence in our knowledge on error presence
- Include number of executions. More executions, more coverage
- For $n \to \infty$ executions, equal to potential coverage
- Observing an error: total coverage
Actual coverage

Probability mass distribution expressing execution coverage of single or sequence of executions

- Indication of confidence in our knowledge on error presence
- Include number of executions. More executions, more coverage

 For \(n \to \infty \) executions, equal to potential coverage
- Observing an error: total coverage
- *Not* observing an error: increase of coverage, yet no total coverage
Mark Timmer

An extended test coverage framework
Motivation for the model

Actual coverage:
Which errors will actually be covered?
Motivation for the model

Actual coverage:
Which errors will actually be covered?

Necessary:
- Probabilistic transition behaviour
Motivation for the model

Actual coverage:
Which errors will actually be covered?

Necessary:
- Probabilistic transition behaviour
- Occurrence probabilities

Mark Timmer
An extended test coverage framework
Motivation for the model

Actual coverage:
Which errors will actually be covered?

Necessary:
- Probabilistic transition behaviour
- Occurrence probabilities

Approach:
- Probabilities of correct outputs
- Probabilities of the presence of errors
- Probabilities of the occurrence of erroneous behaviour
Mark Timmer

An extended test coverage framework
Definition of the correctness probability function

Correctness probability function:
- 0 for incorrect outputs
- 0 for transitions not included in the test case

Values known from implementation or measured.
Probabilities of the presence and occurrence of errors

Fault presence function
Gives the probability that a certain error is made

Error occurrence function
Gives the probability that a certain error occurs, *given its presence*
Probabilistic transition behaviour

Mark Timmer
An extended test coverage framework
Probabilistic transition behaviour

\[p = p_f \times p_o \]
Probabilistic transition behaviour

Erroneous outputs:
\[p = p_f \times p_o \]
Probabilistic transition behaviour

Erroneous outputs:
\[p = p_f \times p_o \]

Correct outputs:
\[p = p_c \times (1 - \sum p_{error}) \]
Probabilistic transition behaviour

Erroneous outputs:
\[p = p_f \times p_o \]

Correct outputs:
\[p = p_c \times (1 - \sum p_{error}) \]

Mark Timmer
An extended test coverage framework
Path probabilities

\[p(a? \ e! \ b?)(d!) = 0.025 \]
Path probabilities

\[p(a? \ e! \ b?)(d!) = 0.025 \]
Path probabilities

\[
p(a? \ e! \ b?)(d!) = 0.025
\]

\[
\bar{p}(a? \ e! \ b? \ d!) = 1.0 \cdot 0.2475 \cdot 1.0 \cdot 0.025 = 0.006
\]
An execution covers an error if it passes it. Coverage fraction: the confidence in our knowledge. Observing an error yields total certainty: $\text{CovFrac} = 1$. Not observing an error n times: $\text{CovFrac} = 1 - (1 - p)^n$.

Mark Timmer
An extended test coverage framework
An execution *covers* an error if it passes it.
An execution *covers* an error if it passes it.
An execution *covers* an error if it passes it.

Coverage fraction: the confidence in our knowledge.
An execution *covers* an error if it passes it.

Coverage fraction: the confidence in our knowledge.

Observing an error yields total certainty: $\text{CovFrac} = 1$.

[Diagram of a tree structure with nodes labeled as 'fail' or 'pass' and probabilities indicated.]

Mark Timmer

An extended test coverage framework
An execution covers an error if it passes it.

- **Coverage fraction**: the confidence in our knowledge.
- Observing an error yields total certainty: \(\text{CovFrac} = 1 \).
- Not observing an error \(n \) times: \(\text{CovFrac} = 1 - (1 - p_o)^n \)
Execution coverage

Def. of execution coverage

\[\text{absExCov}(\sigma, t, f, p_o) = \sum_{\sigma' \in t} f(\sigma') \cdot \text{CovFrac}(\sigma', p_o, \sigma) \]
Execution coverage

\[\text{Def. of execution coverage} \]

\[\text{absExCov}(\sigma, t, f, p_\sigma) = \sum_{\sigma' \in t} f(\sigma') \cdot \text{CovFrac}(\sigma', p_\sigma, \sigma) \]

\[\text{absExCov}(..) = \]

Mark Timmer
An extended test coverage framework
Execution coverage

\[\text{absExCov}(\sigma, t, f, p_o) = \sum_{\sigma' \in t} f(\sigma') \cdot \text{CovFrac}(\sigma', p_o, \sigma) \]

absExCov(..) =
Execution coverage

Def. of execution coverage

\[
\text{absExCov}(\sigma, t, f, p_o) = \sum_{\sigma' \in t} f(\sigma') \cdot \text{CovFrac}(\sigma', p_o, \sigma)
\]

absExCov(..) = 7 \cdot (1 - (1 - 0.2)^1) +
Def. of execution coverage

$$absExCov(\sigma, t, f, p_o) = \sum_{\sigma' \in t} f(\sigma') \cdot \text{CovFrac}(\sigma', p_o, \sigma)$$

$$absExCov(\ldots) = 7 \cdot (1 - (1 - 0.2)^1) +$$
Def. of execution coverage

\[
\text{absExCov}(\sigma, t, f, p_o) = \sum_{\sigma' \in t} f(\sigma') \cdot \text{CovFrac}(\sigma', p_o, \sigma)
\]

absExCov(\ldots) = 7 \cdot (1 - (1 - 0.2)^1) + 4 \cdot 0.5 + 6 \cdot 0.8 = 8.2
Def. of execution coverage

\[
\text{absExCov}(\sigma, t, f, p_o) = \sum_{\sigma' \in t} f(\sigma') \cdot \text{CovFrac}(\sigma', p_o, \sigma)
\]

\[
\text{absExCov}(..) = 7 \cdot (1 - (1 - 0.2)^1) + 4 \cdot 0.5 + 6 \cdot 0.8 = 8.2
\]

For three times this execution:
\[
\text{absExCov}(..) = 7 \cdot (1 - (1 - 0.2)^3) + \cdots = 12.868
\]
Mark Timmer

An extended test coverage framework
Actual coverage of test cases

The actual coverage of a single execution is a random variable.

\[P[absCov_{t,f,p,o}^{\text{single}} = x] = \sum_{\sigma \in \text{exec}_t} \bar{p}(\sigma) \]

\[\text{absExCov}(\sigma, t, f, p_o) = x \]
Actual coverage of test cases

The actual coverage of a sequence of execution is also a random variable.

\[\Pr[\text{absCov}^n_{t,f,p,o} = x] = \sum_{E \in \text{exec}^n_t} \bar{p}(E) \]

where \(\text{absExCov}(E,t,f,p,o) = x \)
Expected actual coverage

\[E(\text{absCov}_{t,f,p,p_0}^{\text{single}}) = \sum_{\sigma \in \text{exec}} \text{absExCov}(\sigma, t, f, p_0) \cdot \bar{p}(\sigma) \]
Expected actual coverage

\[E(\text{absCov}_{t,f,p,p_o}^{\text{single}}) = \sum_{\sigma \in \text{exec}_t} \text{absExCov}(\sigma, t, f, p_o) \cdot \bar{p}(\sigma) \]

Potential coverage

Absolute potential coverage: 28
\[E(\text{absCov}^{\text{single}}_{t,f,p,p_o}) = \sum_{\sigma \in \text{exec}_t} \text{absExCov}(\sigma, t, f, p_o) \cdot \overline{p}(\sigma) \]

Potential coverage

Absolute potential coverage: 28

Actual coverage

\[E(\text{absCov}^{\text{single}}_{t,f,p,p_o}) = \text{absExCov}(a? e! b? d!, t, f, p_o) \cdot \overline{p}(a? e! b? d!) + \text{absExCov}(a? e! b? e!, t, f, p_o) \cdot \overline{p}(a? e! b? e!) + \text{absExCov}(a? e! b? c!, t, f, p_o) \cdot \overline{p}(a? e! b? c!) + \cdots + \text{absExCov}(a? c!, t, f, p_o) \cdot \overline{p}(a? c!) \]
Expected actual coverage

\[
E(\text{absCov}^{\text{single}}_{t,f,p,p_0}) = \sum_{\sigma \in \text{exec}} \text{absExCov}(\sigma, t, f, p_0) \cdot \bar{p}(\sigma)
\]

Potential coverage

Absolute potential coverage: 28

Actual coverage

\[
E(\text{absCov}^{\text{single}}_{t,f,p,p_0}) =
\text{absExCov}(a? e! b? d!, t, f, p_0) \cdot \bar{p}(a? e! b? d!)+
\text{absExCov}(a? e! b? e!, t, f, p_0) \cdot \bar{p}(a? e! b? e!)+
\text{absExCov}(a? e! b? c!, t, f, p_0) \cdot \bar{p}(a? e! b? c!)+
\cdots + \text{absExCov}(a? c!, t, f, p_0) \cdot \bar{p}(a? c!)
\]
Expected actual coverage

\[E(\text{absCov}_{t,f,p,p_0}^{\text{single}}) = \sum_{\sigma \in \text{exec}} \text{absExCov}(\sigma, t, f, p_o) \cdot \bar{p}(\sigma) \]

Potential coverage

Absolute potential coverage: 28

Actual coverage

\[E(\text{absCov}_{t,f,p,p_0}^{\text{single}}) = (7 \cdot 0.2 + 4 \cdot 1 + 6 \cdot 0.8) \cdot \bar{p}(a? e! b? d!) + \text{absExCov}(a? e! b? e!, t, f, p_o) \cdot \bar{p}(a? e! b? e!) + \text{absExCov}(a? e! b? c!, t, f, p_o) \cdot \bar{p}(a? e! b? e!) + \cdots + \text{absExCov}(a? c!, t, f, p_o) \cdot \bar{p}(a? c!) \]
Expected actual coverage

$$E(\text{absCov}_{t,f,p,p_o}^{\text{single}}) = \sum_{\sigma \in \text{exec}_t} \text{absExCov}(\sigma, t, f, p_o) \cdot \bar{p}(\sigma)$$

Potential coverage

Absolute potential coverage: 28

Actual coverage

$$E(\text{absCov}_{t,f,p,p_o}^{\text{single}}) = (7 \cdot 0.2 + 4 \cdot 1 + 6 \cdot 0.8) \cdot (0.2475 \cdot 0.025) + \text{absExCov}(a? e! b? e!, t, f, p_o) \cdot \bar{p}(a? e! b? e!) + \text{absExCov}(a? e! b? c! , t, f, p_o) \cdot \bar{p}(a? e! b? c!) + \cdots + \text{absExCov}(a? c!, t, f, p_o) \cdot \bar{p}(a? c!)$$
Expected actual coverage

\[E(\text{absCov}^{\text{single}}_{t,f,p,p_o}) = \sum_{\sigma \in \text{exec}_t} \text{absExCov}(\sigma, t, f, p_o) \cdot \bar{p}(\sigma) \]

Potential coverage

Absolute potential coverage: 28

Actual coverage

\[E(\text{absCov}^{\text{single}}_{t,f,p,p_o}) = \\
(7 \cdot 0.2 + 4 \cdot 1 + 6 \cdot 0.8) \cdot (0.2475 \cdot 0.025) + \\
\text{absExCov}(a? e! b? e!, t, f, p_o) \cdot \bar{p}(a? e! b? e!) + \\
\text{absExCov}(a? e! b? c!, t, f, p_o) \cdot \bar{p}(a? e! b? c!) + \\
\cdots + \text{absExCov}(a? c!, t, f, p_o) \cdot \bar{p}(a? c!) \]
\[E(\text{absCov}^{\text{single}}) = \sum_{\sigma \in \text{exec}} \text{absExCov}(\sigma, t, f, p_o) \cdot \bar{p}(\sigma) \]

Potential coverage

Absolute potential coverage: 28

Actual coverage

\[E(\text{absCov}^{\text{single}}) = (7 \cdot 0.2 + 4 \cdot 1 + 6 \cdot 0.8) \cdot (0.2475 \cdot 0.025) + (7 \cdot 0.2 + 4 \cdot 0.5 + 6 \cdot 0.8) \cdot \bar{p}(a? \ e! \ b? \ e!) + \]
\[\text{absExCov}(a? \ e! \ b? \ c!, t, f, p_o) \cdot \bar{p}(a? \ e! \ b? \ c!) + \]
\[\cdots + \text{absExCov}(a? \ c!, t, f, p_o) \cdot \bar{p}(a? \ c!) \]
Expected actual coverage

\[E(\text{absCov}_{t,f,p,p_o}^{\text{single}}) = \sum_{\sigma \in \text{exec}_t} \text{absExCov}(\sigma, t, f, p_o) \cdot \overline{p}(\sigma) \]

Potential coverage

Absolute potential coverage: 28

Actual coverage

\[E(\text{absCov}_{t,f,p,p_o}^{\text{single}}) = \\
(7 \cdot 0.2 + 4 \cdot 1 + 6 \cdot 0.8) \cdot (0.2475 \cdot 0.025) + \\
(7 \cdot 0.2 + 4 \cdot 0.5 + 6 \cdot 0.8) \cdot (0.2475 \cdot 0.935) + \\
\text{absExCov}(a? e! b? c!, t, f, p_o) \cdot \overline{p}(a? e! b? c!)+ \\
\cdots + \text{absExCov}(a? c!, t, f, p_o) \cdot \overline{p}(a? c!) \]
Expected actual coverage

\[E(\text{absCov}^{\text{single}}_{t,f,p,p_o}) = \sum_{\sigma \in \text{exec}} \text{absExCov}(\sigma, t, f, p_o) \cdot \bar{p}(\sigma) \]

Potential coverage

Absolute potential coverage: 28

Actual coverage

\[E(\text{absCov}^{\text{single}}_{t,f,p,p_o}) = (7 \cdot 0.2 + 4 \cdot 1 + 6 \cdot 0.8) \cdot (0.2475 \cdot 0.025) + \\
(7 \cdot 0.2 + 4 \cdot 0.5 + 6 \cdot 0.8) \cdot (0.2475 \cdot 0.935) + \\
\text{absExCov}(a? e! b? c!, t, f, p_o) \cdot \bar{p}(a? e! b? c!) + \\
\cdots + \text{absExCov}(a? c!, t, f, p_o) \cdot \bar{p}(a? c!) = 8.3 \]
Expected actual coverage

Expected value of the actual coverage for a sequence of executions

\[E(\text{absCov}_{t, f, p, p_o}^n) = \sum_{E \in \text{exec}_t^n} \text{absExCov}(E, t, f, p_o) \cdot \bar{p}(E) \]
Expected actual coverage

Expected value of the actual coverage for a sequence of executions

\[
E\left(\text{absCov}^n_{t,f,p,p_o}\right) = \sum_{E \in \text{exec}^n_t} \text{absExCov}(E, t, f, p_o) \cdot \bar{p}(E)
\]

Problem: exponential in \(n\), so not very feasible in practice.
I found a solution:

Expected value of the actual coverage for a sequence of executions

\[E(\text{absCov}^n_{t,f,p,p_o}) = \]
\[\sum_{\sigma a \in t} \left(f(\sigma a) \cdot \left((1 - (1 - \bar{p}(\sigma a))^n \right) \cdot 1 + \right. \]
\[\left. \sum_{i=0}^{n} \binom{n}{i} \bar{p}(\sigma)^i (1 - \bar{p}(\sigma))^{n-i} (1 - p(\sigma,a))^i (1 - (1 - p_o(\sigma,a))^i) \right) \]
I found a solution:

Expected value of the actual coverage for a sequence of executions

\[
E(\text{absCov}^n_{t,f,p,p_o}) = \\
\sum_{\sigma a \in t} \left(f(\sigma a) \cdot \left((1 - (1 - \bar{p}(\sigma a))^n \right) \cdot 1 + \\
\sum_{i=0}^{n} \binom{n}{i} \bar{p}(\sigma)^i (1 - \bar{p}(\sigma))^{n-i} (1 - p(\sigma, a))^i (1 - (1 - p_o(\sigma, a))^i) \right) \right)
\]
I found a solution:

Expected value of the actual coverage for a sequence of executions

\[
E(\text{absCov}_{t,f,p,p_o}^n) = \\
\sum_{\sigma a \in t} \left(f(\sigma a) \cdot \left((1 - (1 - \bar{p}(\sigma a))^n \right) \cdot 1 + \\
\sum_{i=0}^{n} \binom{n}{i} \bar{p}(\sigma)^i (1 - \bar{p}(\sigma))^{n-i} (1 - p(\sigma, a))^i (1 - (1 - p_o(\sigma, a))^i) \right)
\]
I found a solution:

\[
E(\text{absCov}_{t,f,p,p_o}^n) = \\
\sum_{\sigma a \in t} \left(f(\sigma a) \cdot \left((1 - (1 - \bar{p}(\sigma a))^n \right) \cdot 1 + \\
\sum_{i=0}^{n} \binom{n}{i} \bar{p}(\sigma)^i (1 - \bar{p}(\sigma))^{n-i} (1 - p(\sigma, a))^i (1 - (1 - p_o(\sigma, a))^i) \right)
\]
I found a solution:

Expected value of the actual coverage for a sequence of executions

\[E(\text{absCov}_{t,f,p,p_o}^n) = \sum_{\sigma a \in t} f(\sigma a) \cdot \left((1 - (1 - \bar{p}(\sigma a))^n \right) \cdot 1 + \sum_{i=0}^{n} \binom{n}{i} \bar{p}(\sigma)^i (1 - \bar{p}(\sigma))^{n-i} (1 - p(\sigma, a))^i (1 - (1 - p_o(\sigma, a))^i) \) \]
I found a solution:

Expected value of the actual coverage for a sequence of executions

\[
E(\text{absCov}_t,f,p,p_o) = \\
\sum_{\sigma a \in t} \left(f(\sigma a) \cdot \left((1 - (1 - \bar{p}(\sigma a))^n \right) \cdot 1 + \\
\sum_{i=0}^{n} \binom{n}{i} \bar{p}(\sigma)^i (1 - \bar{p}(\sigma))^{n-i} (1 - p(\sigma, a))^i (1 - (1 - p_o(\sigma, a))^i) \right)
\]
Example of actual coverage

Potential coverage
Absolute potential coverage: 28

Actual coverage

$E(\text{absCov}_{t,f,p,po}^5) =$

Actual coverage

$E(\text{absCov}_{t,f,p,po}^{\text{single}}) = 8.3$
Example of actual coverage

Potential coverage

Absolute potential coverage: 28

Actual coverage

\[
E(\text{absCov}_{t,f,p,p_o}^5) = 7 \cdot \left((1 - (1 - 0.01)^5) \cdot 1 + \sum_{i=0}^{5} \binom{5}{i} 1^i \cdot 0.5^{5-i} \cdot (1 - 0.01)^i \cdot (1 - (1 - 0.2)i) \right)
\]

Actual coverage

\[
E(\text{absCov}_{t,f,p,p_o}^{\text{single}}) = 8.3
\]
Example of actual coverage

Potential coverage

Absolute potential coverage: 28

Actual coverage

\[E(\text{absCov}^5_{t,f,p,p_0}) = 7 \cdot \left((1 - (1 - 0.01)^5) \cdot 1 + \sum_{i=0}^{5} \left(\binom{5}{i} 1^i \cdot 0.01^{5-i} \cdot (1 - (1 - 0.2)^i) \right) \right) + 4 \cdot \left((1 - (1 - 0.2475 \cdot 0.025)^5) \cdot 1 + \sum_{i=0}^{5} \left(\binom{5}{i} 0.2475^i \cdot (1 - 0.2475)^{5-i} \cdot (1 - 0.025)^i \cdot (1 - (1 - 0.5)^i) \right) \right) + \cdots \]
Example of actual coverage

Potential coverage

Absolute potential coverage: 28

Actual coverage

\[E(\text{absCov}_t,f,p,p_o) = 8.3 \]

\[= 21.45 \]
Asymptotical behaviour

Theorem

\[\lim_{n \to \infty} E(\text{absCov}_t^n, f, p, p_0) = \text{absCov}_p(t, f) \]
Contents

Mark Timmer
An extended test coverage framework
Actual coverage of test suites

Mark Timmer An extended test coverage framework
Actual coverage of test suites

$|T| \cdot n$ executions of supertest $\equiv n$ executions of test suite
Actual coverage of test suites – different depth

\[|T| \cdot n \text{ executions of supertest} \equiv n \text{ executions of test suite} \]
Actual coverage of test suites – different depth

\[|T| \cdot n \text{ executions of supertest} \equiv n \text{ executions of test suite} \]
Actual coverage of test suites – input vs. output

Problem: $\sigma e!$ seems to be covered all the time

$|T| \cdot n$ executions of supertest $\equiv n$ executions of test suite
Actual coverage of test suites – input vs. output

$|T| \cdot n$ executions of supertest $\equiv n$ executions of test suite
Actual coverage of test suites – input vs. output

\[|T| \cdot n \text{ executions of supertest} \equiv n \text{ executions of test suite} \]

Problem: \(\sigma e! \) seems to be covered all the time
Actual coverage of test suites

\[E(\text{absCov}_{t,f,p,p_o}^n) = \sum_{\sigma_a \in t} \left(f(\sigma a) \cdot \left((1 - (1 - \bar{p}(\sigma a))^n \right) \cdot 1 + \sum_{i=0}^{n} \binom{n}{i} \bar{p}(\sigma)^i (1 - \bar{p}(\sigma))^{n-i} (1 - p(\sigma, a)^i) (1 - (1 - p_o(\sigma, a))^i) \right) \]
Actual coverage of test suites

\[
E(\text{absCov}_{t,f,p,p_o}^n) = \sum_{\sigma a \in t} \left(f(\sigma a) \cdot \left((1 - (1 - \bar{p}(\sigma a))^c(\sigma)^n \right) \right)
\]

\[
+ \frac{c(\sigma)^n}{\sum_{i=0}^n \left(\binom{c(\sigma)^n}{i} \bar{p}(\sigma)^i (1 - \bar{p}(\sigma))^c(\sigma)^{n-i} \right) (1 - p(\sigma, a)^i)(1 - (1 - p_o(\sigma, a)^i))}
\]

c(\sigma): the fraction of test cases that observe after \(\sigma \).
Conclusions

- Defined a quiescence-preserving transformation of non-deterministic fault automata to deterministic fault automata
Conclusions

- Defined a quiescence-preserving transformation of non-deterministic fault automata to deterministic fault automata
- Developed a specification mechanism for probabilistic transition behaviour
Conclusions

- Defined a quiescence-preserving transformation of non-deterministic fault automata to deterministic fault automata
- Developed a specification mechanism for probabilistic transition behaviour
- Developed a notion of actual test coverage which applies to test cases and test suites, with polynomially computable expectations

- Indication of confidence in our knowledge on error presence
 - Include number of executions. More executions, more coverage
 - For $n \to \infty$ executions, equal to potential coverage
 - Observing an error: total coverage
 - Not observing an error: increase of coverage, yet no total coverage

Mark Timmer
An extended test coverage framework
Conclusions

- Defined a quiescence-preserving transformation of non-deterministic fault automata to deterministic fault automata
- Developed a specification mechanism for probabilistic transition behaviour
- Developed a notion of actual test coverage which applies to test cases and test suites, with polynomially computable expectations

- Indication of confidence in our knowledge on error presence
- Include number of executions. More executions, more coverage
- For \(n \to \infty \) executions, equal to potential coverage
- Observing an error: total coverage
- Not observing an error: increase of coverage, yet no total coverage
Future work

- Test evaluation
 - Given results of executions, draw conclusions
Future work

• Test evaluation
 • Given results of executions, draw conclusions
• Test optimization
 • Construct test case of size k with maximum coverage
Future work

- Test evaluation
 - Given results of executions, draw conclusions

- Test optimization
 - Construct test case of size k with maximum coverage
 - Construct smallest test suite with p percent actual relative coverage
Future work

- Test evaluation
 - Given results of executions, draw conclusions

- Test optimization
 - Construct test case of size k with maximum coverage
 - Construct smallest test suite with p percent actual relative coverage
 - ...

Mark Timmer
An extended test coverage framework