Symbolic Manipulation of Markov Automata

Jaco van de Pol
September 8, 2012

Joint work with Joost-Pieter Katoen, Mariëlle Stoelinga, and Mark Timmer
Model Driven Design

- Modeling complex interaction, behaviour and data
- High-performance model analysis
- Quantitative modeling and evaluation
Model Driven Design

- Modeling complex interaction, behaviour and data
- High-performance model analysis
- Quantitative modeling and evaluation

Aim
Transfer high-performance scalable analysis to quantitative models
Quantitative Modeling Requirements
Quantitative Modeling Requirements
Specifying systems with

- Nondeterminism → LTS
- Probability → DTMC
- Stochastic timing → CTMC
Specifying systems with

- Nondeterminism
- Probability
- Stochastic timing

Probabilistic Automata (PA, MDP)
Specifying systems with

- Nondeterminism
- Probability
- Stochastic timing

Interactive Markov Chains (IMC)
Markov Automata in the stochastic modeling landscape

Specifying systems with

- Nondeterminism
- Probability
- Stochastic timing

Markov Automata (MA)
Markov Automata in the stochastic modeling landscape

Specifying systems with

- Nondeterminism
- Probability
- Stochastic timing

Markov Automata (MA)

\[\lambda_1 \rightarrow \text{Station 1} \]

\[\lambda_2 \rightarrow \text{Station 2} \]

\[\text{Server} \]

\((\text{error probability } p) \) poll

\[\mu \]

poll \((\text{error probability } p) \)

\[\tau \]

UNIVERSITY OF TWENTE.

Symbolic Manipulation of Markov Automata

September 8, 2012
Markov Automata in the stochastic modeling landscape

Specifying systems with

- Nondeterminism
- Probability
- Stochastic timing

Markov Automata (MA)
Markov Automata in the stochastic modeling landscape

Specifying systems with

- Nondeterminism
- Probability
- Stochastic timing

Markov Automata (MA)
Markov Automata in the stochastic modeling landscape

Specifying systems with

- Nondeterminism
- Probability
- Stochastic timing

Markov Automata (MA)
Markov Automata in the stochastic modeling landscape

Specifying systems with

- Nondeterminism
- Probability
- Stochastic timing

Markov Automata (MA)
Specifying systems with

- Nondeterminism
- Probability
- Stochastic timing

Markov Automata (MA)
Markov Automata in the stochastic modeling landscape

Specifying systems with

- Nondeterminism
- Probability
- Stochastic timing

Markov Automata (MA)
Overview of our approach – Symbolic Manipulation

- Specification
- Generation
- State space
- Visualization
- Model checking
- Evaluation
- Minimization
Overview of our approach – Symbolic Manipulation

- Specification
- Linearization
- Intermediate format
- Generation
- State space
- Visualization
- Model checking
- Evaluation
- Optimization
 - Static Analysis
 - Confluence reduction
- Minimization
Overview of our approach – Symbolic Manipulation

- Specification
- Linearization
- Optimization
- State space
- Visualization
- Model checking
- Evaluation
- MAPA
- Intermediate format
- Linear Process
- Optimization (Static Analysis, Confluence reduction)
- Minimization
- Markov Automaton
- Generation
Contents

1. Introduction
2. MAPA: Markov-Automatic Process Algebra
3. Linearization
4. Optimization by Static Analysis
5. Confluence Reduction
6. High-performance State Space Generation in LTSmin
7. Implementation in SCOOP and Use Case
8. Conclusions and Future Work
MAPA: a process algebra with data, probabilities, rates

- **ACP** (Algebra of Communicating Processes)
 - Basics: alternation, sequence, recursion (maps to LTS)
 - We also use: parallel composition, encapsulation, hiding

The grammar of ACP/μCRL/pCRL/MAPA

Process terms in **ACP** are obtained by the following grammar:

\[p ::= Y \mid p + p \mid \text{ } \mid a \mid p \]
MAPA: a process algebra with data, probabilities, rates

- **ACP** (Algebra of Communicating Processes)
 - Basics: alternation, sequence, recursion (maps to LTS)
 - We also use: parallel composition, encapsulation, hiding
- **µCRL** (micro Common Representation Language)
 - Addition: Algebraic Data Types (maps to ∞ LTS)

The grammar of ACP/µCRL/pCRL/MAPA

Process terms in µCRL are obtained by the following grammar:

\[p ::= Y(t) \mid p + p \mid \sum_{x:D} p \mid c \Rightarrow p \mid a(t) \mid p \]
MAPA: a process algebra with data, probabilities, rates

- **ACP** (Algebra of Communicating Processes)
 - Basics: alternation, sequence, recursion (maps to LTS)
 - We also use: parallel composition, encapsulation, hiding
- **µCRL** (micro Common Representation Language)
 - Addition: Algebraic Data Types (maps to ∞ LTS)
 - Extra: parameters, data choice, conditions

The grammar of ACP/µCRL/prCRL/MAPA

Process terms in µCRL are obtained by the following grammar:

\[
p ::= Y(t) \mid p + p \mid \sum_{x:D} p \mid c \Rightarrow p \mid a(t) \mid p
\]
MAPA: a process algebra with data, probabilities, rates

- **ACP** (Algebra of Communicating Processes)
 - Basics: alternation, sequence, recursion (maps to LTS)
 - We also use: parallel composition, encapsulation, hiding
- **μCRL** (micro Common Representation Language)
 - Addition: Algebraic Data Types (maps to ∞ LTS)
 - Extra: parameters, data choice, conditions
- **prCRL**: Probabilistic CRL
 - Addition: probabilistic choice..................(maps to PA)

The grammar of ACP/μCRL/prCRL/MAPA

Process terms in prCRL are obtained by the following grammar:

\[
p ::= Y(t) \mid p + p \mid \sum_{x:D} p \mid c \Rightarrow p \mid a(t)\sum_{x:D} f:p
\]
MAPA: a process algebra with data, probabilities, rates

- **ACP** (Algebra of Communicating Processes)
 - Basics: alternation, sequence, recursion (maps to LTS)
 - We also use: parallel composition, encapsulation, hiding

- **µCRL** (micro Common Representation Language)
 - Addition: Algebraic Data Types (maps to ∞ LTS)
 - Extra: parameters, data choice, conditions

- **prCRL**: Probabilistic CRL
 - Addition: probabilistic choice.................. (maps to PA)

- **MAPA**: Markov-Automatic Process Algebra
 - Addition: rates for stochastic timing (maps to MA)

The grammar of ACP/µCRL/prCRL/MAPA

Process terms in MAPA are obtained by the following grammar:

\[p ::= Y(t) \mid p + p \mid \sum_{x:D} p \mid c \Rightarrow p \mid a(t)\sum_{x:D} f:p \mid \lambda \cdot p \]
An example specification

- There are 10 different jobs
- The type of job arriving is chosen **nondeterministically**
- Service time depends on job (we store jobs in a **queue**)

```
There are 10 different jobs
The type of job arriving is chosen nondeterministically
Service time depends on job (we store jobs in a queue)
```
An example specification

There are 10 different jobs
- The type of job arriving is chosen nondeterministically
- Service time depends on job (we store jobs in a queue)

The MAPA specification of a station:

\[
\text{type } \text{Jobs} = \{1, \ldots, 10\}
\]

\[
\text{Station}(i : \{1, 2\}, q : \text{Queue}) = \text{notFull}(q) \Rightarrow (2i) \cdot \sum_{j : \text{Jobs}} \text{arrive}(j). \text{Station}(i, \text{enqueue}(q, j))
\]
An example specification

There are 10 different jobs

The type of job arriving is chosen nondeterministically

Service time depends on job (we store jobs in a queue)

The MAPA specification of a station:

\[
\text{type } \text{Jobs} = \{1, \ldots, 10\}
\]

\[
\text{Station}(i : \{1, 2\}, q : \text{Queue})
\]

\[
= \text{notFull}(q) \Rightarrow (2i) \cdot \sum_{j : \text{Jobs}} \text{arrive}(j).\text{Station}(i, \text{enqueue}(q, j))
\]

\[
+ \text{notEmpty}(q) \Rightarrow \text{deliver}(i, \text{head}(q)) \sum_{k \in \{1, 9\}} \frac{k}{10} : k = 1 \Rightarrow \text{Station}(i, q)
\]

\[
+ k = 9 \Rightarrow \text{Station}(i, \text{tail}(q))
\]
An example specification

There are 10 different jobs
The type of job arriving is chosen nondeterministically
Service time depends on job (we store jobs in a queue)

The MAPA specification of a station:

\[
\text{type } \text{Jobs} = \{1, \ldots, 10\}
\]

\[
\text{Station}(i : \{1, 2\}, q : \text{Queue})
\]
\[
= \text{notFull}(q) \Rightarrow (2i) \cdot \sum_{j : \text{Jobs}} \text{arrive}(j) \cdot \text{Station}(i, \text{enqueue}(q, j))
\]
\[
+ \text{notEmpty}(q) \Rightarrow \text{deliver}(i, \text{head}(q))(\frac{1}{10} : \text{Station}(i, q) \oplus \frac{9}{10} : \text{Station}(i, \text{tail}(q)))
\]
Linear Process Equations

We define an intermediate format for µCRL, the LPE:

\[X(g : G) = \sum_{d:D_1} c_1 \Rightarrow a_1(t_1)X(n_1) \]

\[+ \cdots \]

\[+ \sum_{d:D_m} c_m \Rightarrow a_m(t_m)X(n_m) \]

- \(g \) is a vector of global state variables, \(d \) are local variables
- \(c, a(t), n \) are the condition, action, and the next state vector
Linear Process Equations

We define an intermediate format for prCRL, the LPPE:

\[X(g : G) = \sum_{d:D_1} c_1 \implies a_1(t_1) \sum_{e:E_1} f_1 : X(n_1) \]

+ \ldots

+ \sum_{d:D_m} c_m \implies a_m(t_m) \sum_{e:E_m} f_m : X(n_m) \]

- \(g \) is a vector of global state variables, \(d \) are local variables
- \(c, a(t), n \) are the condition, action, and the next state vector
- \(f \) is a probability distribution
We define an intermediate format for MAPA, the MLPPE:

\[
X(g : G) = \sum_{d : D_1} c_1 \Rightarrow a_1(t_1) \sum_{e : E_1} f_1 : X(n_1)
\]

\[+ \cdots\]

\[
+ \sum_{d : D_m} c_m \Rightarrow a_m(t_m) \sum_{e : E_m} f_m : X(n_m)
\]

\[+ \sum_{d : D_{m'}} c_{m'} \Rightarrow \lambda_{m'} \cdot X(n_{m'})\]

\[+ \cdots\]

\[
+ \sum_{d : D_n} c_n \Rightarrow \lambda_n \cdot X(n_n)
\]

- \(g\) is a vector of global state variables, \(d\) are local variables
- \(c, a(t), n\) are the condition, action, and the next state vector
- \(f\) is a probability distribution, and \(\lambda\) indicates the rates
A random number generator

\[X(\text{active} : \text{Bool}) = \]
\[
\begin{align*}
\text{not(\text{active})} \Rightarrow & \text{ping} \cdot \sum_{b: \text{Bool}} X(b) \\
\text{+ active} \Rightarrow & \tau \sum_{n: \mathbb{N}^+} \frac{1}{2^n} \left(\text{send}(n) \cdot X(\text{false}) \right)
\end{align*}
\]
A random number generator

\[X(\text{active} : \text{Bool}) = \]

\[\text{not(\text{active}) } \Rightarrow \text{ping} \cdot \sum_{b: \text{Bool}} X(b) \]

\[+ \text{ active } \Rightarrow \tau \sum_{n:\mathbb{N}^+} \frac{1}{2^n} : \left(\text{send}(n) \cdot X(\text{false}) \right) \]
Linear Probabilistic Process Equations – an example

Specification in prCRL

\[X(\text{active} : \text{Bool}) = \]
\[\text{not(\text{active})} \Rightarrow \text{ping} \cdot \sum_{b : \text{Bool}} X(b) \]
\[+ \text{active} \Rightarrow \tau \sum_{n : \mathbb{N}^+} \frac{1}{2^n} : \text{send}(n) \cdot X(\text{false}) \]
Linear Probabilistic Process Equations – an example

Specification in prCRL

\[X(\text{active} : \text{Bool}) = \]
\[\text{not(active)} \Rightarrow \text{ping} \cdot \sum_{b:\text{Bool}} X(b) \]
\[+ \text{active} \Rightarrow \tau \sum_{n:\mathbb{N}^+} \frac{1}{2^n} : \text{send}(n) \cdot X(\text{false}) \]

Specification in LPPE

\[X(pc : \{1..3\}, n : \mathbb{N}^+) = \]
\[+ pc = 1 \Rightarrow \text{ping} \cdot X(2, 1) \]
\[+ pc = 2 \Rightarrow \text{ping} \cdot X(2, 1) \]
\[+ pc = 2 \Rightarrow \tau \sum_{n:\mathbb{N}^+} \frac{1}{2^n} : X(3, n) \]
\[+ pc = 3 \Rightarrow \text{send}(n) \cdot X(1, 1) \]
Advantages of Linear Processes

\[X(g : G) = \sum_{i \in I} \sum_{d_i : D_i} c_i(g, d_i) \Rightarrow a_i(t_i) \sum_{e_i : E_i} f_i(g, d_i, e_i) : X(n_i(g, d_i, e_i)) \]

\[+ \sum_{j \in J} \sum_{d_j : D_j} c_j(g, d_j) \Rightarrow (\lambda_j(g, d_j)) \cdot X(n_j(g, d_j)) \]

Advantages of using Linear Processes:

- Straightforward **state space generation**
- Direct definition of **parallel composition**
- **Symbolic optimizations** enabled at the language level
- Control is encoded in data: apply **automated theorem proving**
Advantages of Linear Processes

\[X(g : G) = \sum_{i \in I} \sum_{d_i : D_i} c_i(g, d_i) \Rightarrow a_i(t_i) \sum_{e_i : E_i} f_i(g, d_i, e_i) : X(n_i(g, d_i, e_i)) \]

\[+ \sum_{j \in J} \sum_{d_j : D_j} c_j(g, d_j) \Rightarrow (\lambda_j(g, d_j)) \cdot X(n_j(g, d_j)) \]

Advantages of using Linear Processes:

- **Straightforward state space generation**
- **Direct definition of parallel composition**
- **Symbolic optimizations enabled at the language level**
- **Control is encoded in data:** apply automated theorem proving

Example: \(\varphi(g) \) is an invariant of \(X \) iff

\[\bigwedge_{i \in I \cup J} \forall g, d_i. \varphi(g) \land c_i(g, d_i) \Rightarrow \varphi(n_i(g, d_i)) \]
Optimization techniques for Probabilistic LPPE

1. LPPE simplification
 - Constant elimination
 - Summation elimination
 - Expression simplification

2. State space reduction
 - Dead variable reduction
 - Confluence reduction
Optimization techniques for Probabilistic LPPE

1. LPPE simplification
 - Constant elimination
 - Summation elimination
 - Expression simplification

2. State space reduction
 - Dead variable reduction
 - Confluence reduction

\[X(id : ld) = print(id) \cdot X(id) \]
\[init \ X(Mark) \]

\[\rightarrow \]

\[X = print(Mark) \cdot X \]
\[init \ X \]
Optimization techniques for Probabilistic LPPE

1. **LPPE simplification**
 - Constant elimination
 - Summation elimination
 - Expression simplification

2. **State space reduction**
 - Dead variable reduction
 - Confluence reduction

\[X = \sum_{d \in \{1,2,3\}} d = 2 \Rightarrow \text{send}(d) \cdot X \]

init X

\[X = \text{send}(2) \cdot X \]

init X
Optimization techniques for Probabilistic LPPE

1. LPPE simplification
 - Constant elimination
 - Summation elimination
 - Expression simplification

2. State space reduction
 - Dead variable reduction
 - Confluence reduction

\[X = (3 = 1 + 2 \lor x > 5) \Rightarrow \text{beep} \cdot Y \]

\[\Rightarrow \]

\[X = \text{beep} \cdot Y \]
Optimization techniques for Probabilistic LPPE

1. LPPE simplification
 - Constant elimination
 - Summation elimination
 - Expression simplification

2. State space reduction
 - Dead variable reduction
 - Confluence reduction

- Deduce the control flow graphs of an LPPE
- Compute the relevant (live) variables at each control location
- Reset dead variables, thereby collapsing states
Optimization techniques for Probabilistic LPPE

1. LPPE simplification
 - Constant elimination
 - Summation elimination
 - Expression simplification

2. State space reduction
 - Dead variable reduction
 - Confluence reduction

- Detect **confluent** internal transitions
- Give these transitions **priority**
Special optimization techniques for linear MAPA processes:

- Maximal progress reduction
- Summation elimination
Special optimization techniques for linear MAPA processes:

- Maximal progress reduction
- Summation elimination

\[X = \tau \cdot X + (5) \cdot X \quad \rightarrow \quad X = \tau \cdot X \]
Special optimization techniques for linear MAPA processes:

- Maximal progress reduction
- Summation elimination

\[
X = \sum_{d:\{1,2,3\}} d = 2 \Rightarrow send(d) \cdot X
\]

\[
Y = \sum_{d:\{1,2,3\}} (5) \cdot Y
\]

\[
X = send(2) \cdot X
\]

\[
Y = (15) \cdot Y
\]
Mimic interactive behaviour:
Strong bisimulation for Markov automata

Mimic interactive behaviour:

Mimic Markovian behaviour:
Strong bisimulation for Markov automata

Mimic interactive behaviour:

Mimic Markovian behaviour:

Some care is necessary:

\[a \cdot p + \lambda \cdot q = a \cdot p \] \hspace{1cm} \text{(maximal progress)}

\[a \cdot p + a \cdot p = a \cdot p \] \hspace{1cm} \text{(idempotence)}

\[\lambda \cdot p + \lambda \cdot p = 2\lambda \cdot p \] \hspace{1cm} \text{(preserve exit rate)}
From Probabilistic systems to Markov Automata

Viewing any rate λ just as an action label $\text{rate}(\lambda)$, we get:

$$
\text{encode} : \text{MAPA} \rightarrow \text{prCRL} \\
\text{decode} : \text{prCRL} \rightarrow \text{MAPA}
$$

Theorem

For any prCRL transformation f preserving multiplicities,

$$
\text{decode}(f(\text{encode}(M))) \approx M
$$
From Probabilistic systems to Markov Automata

Viewing any rate λ just as an action label $rate(\lambda)$, we get:

\[
\text{encode} : \text{MAPA} \rightarrow \text{prCRL} \\
\text{decode} : \text{prCRL} \rightarrow \text{MAPA}
\]

Theorem

For any prCRL transformation f preserving multiplicities,

\[
\text{decode}(f(\text{encode}(M))) \approx M
\]

Techniques from the PA world *generalise trivially* to the MA world!

Corollaries

- The linearization procedure of prCRL can be *reused* for MAPA.
- $\text{deadVarRedMA} = \text{decode} \circ \text{deadVarRedProb} \circ \text{encode}$
Weaker notion: **branching probabilistic bisimulation**
Weaker notion: branching probabilistic bisimulation
Weaker notion: branching probabilistic bisimulation

Probability of green:
\[
\frac{1}{2} \cdot \frac{1}{3} + \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{2}
\]

Probability of red:
\[
\frac{1}{2} \cdot \frac{2}{3} + \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{2}
\]
Weaker notion: **branching probabilistic bisimulation** (based on probabilistic schedulers)
Weaker notion: **branching probabilistic bisimulation**
(based on probabilistic schedulers)

\[
\begin{align*}
\text{Probability of green: } & \quad \frac{1}{2} \cdot \frac{1}{3} + \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{2} \\
\text{Probability of red: } & \quad \frac{1}{2} \cdot \frac{2}{3} + \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{2}
\end{align*}
\]

Reduce the state space modulo branching bisimulation *on-the-fly*?
State space reduction using confluence

Step 1: Detect (and mark) confluent τ transitions.
Step 1: Detect (and mark) confluent τ transitions.

![Diagram showing state space reduction using confluence](image-url)
Step 1: Detect (and mark) confluent τ transitions.
State space reduction using confluence

Step 1: Detect (and mark) confluent τ transitions.

Step 2: Reduce the state space to representative states in the terminal strongly connected components in the τ_c-graph.
State space reduction using confluence

Step 1: Detect (and mark) confluent τ transitions.

Step 2: Reduce the state space to representative states in the terminal strongly connected components in the τ_c-graph.
Confluence: non-probabilistic versus probabilistic

Theorem
States that are connected by confluent τ_c-steps are branching bisimilar.

Strong confluence

Strong probabilistic confluence
Confluence: non-probabilistic versus probabilistic

Strong confluence

Strong probabilistic confluence

Theorem
States that are connected by confluent \(\tau_c \)-steps are branching bisimilar.
Confluence: non-probabilistic versus probabilistic

Strong confluence

Strong probabilistic confluence

Theorem
States that are connected by confluent τ_c-steps are branching bisimilar.
Confluence: non-probabilistic versus probabilistic

Theorem

States that are connected by confluent τ-steps are branching bisimilar.
Symbolic detection of confluence

\[X(g : G) = \sum_{d_i : D_i} c_i \Rightarrow \tau \cdot X(n_i) \]

\[+ \sum_{d_j : D_j} c_j \Rightarrow a_j \sum_{e_j : E_j} f_j : X(n_j) \]

Two summands \(i, j \) commute if

\[i : \tau_c \quad \text{and} \quad j : a \]

\[j : a \quad \text{and} \quad i : \tau_c \]

UNIVERSITY OF TWENTE.

Symbolic Manipulation of Markov Automata

September 8, 2012 20 / 26
Symbolic detection of confluence

\[X(g : G) = \sum_{d_i:D_i} c_i \Rightarrow \tau \cdot X(n_i) \]

\[+ \sum_{d_j:D_j} c_j \Rightarrow a_j \sum_{e_j:E_j} f_j \cdot X(n_j) \]

Two summands \(i, j \) commute if

\[\forall g, d_i, d_j, e_j : (c_i(g, d_i) \land c_j(g, d_j)) \rightarrow \]

\[\left(\begin{array}{c} \vdots \\ \vdots \end{array} \right) \]
Symbolic detection of confluence

\[X(g : G) = \sum_{d_i : D_i} c_i \Rightarrow \tau \cdot X(n_i) \]

\[+ \sum_{d_j : D_j} c_j \Rightarrow a_j \sum_{e_j : E_j} f_j \cdot X(n_j) \]

Two summands \(i, j \) commute if

\[\forall g, d_i, d_j, e_j : (c_i(g, d_i) \land c_j(g, d_j)) \rightarrow \]

\[c_j(n_i(g, d_i), d_j) \land c_i(n_j(g, d_j, e_j), d_i) \]
Symbolic detection of confluence

\[X(g : G) = \sum_{d_i : D_i} c_i \Rightarrow \tau \cdot X(n_i) \]
\[\quad + \sum_{d_j : D_j} c_j \Rightarrow a_j \sum_{e_j : E_j} f_j : X(n_j) \]

Two summands \(i, j \) commute if

\[\forall g, d_i, d_j, e_j : (c_i(g, d_i) \land c_j(g, d_j)) \rightarrow \]
\[\left(c_j(n_i(g, d_i), d_j) \land c_i(n_j(g, d_j, e_j), d_i) \right) \land \]
\[a_j(g, d_j) = a_j(n_i(g, d_i), d_j) \]
Symbolic detection of confluence

\[X(g : G) = \sum_{d_i : D_i} c_i \Rightarrow \tau \cdot X(n_i) \]

\[\ldots \]

\[+ \sum_{d_j : D_j} c_j \Rightarrow a_j \sum_{e_j : E_j} f_j \cdot X(n_j) \]

Two summands \(i, j \) commute if

\[\forall g, d_i, d_j, e_j : (c_i(g, d_i) \land c_j(g, d_j)) \rightarrow \]

\[\left(c_j(n_i(g, d_i), d_j) \land c_i(n_j(g, d_j, e_j), d_i) \right) \]

\[\land \quad a_j(g, d_j) = a_j(n_i(g, d_i), d_j) \]

\[\land \quad n_j(n_i(g, d_i), d_j, e_j) = n_i(n_j(g, d_j, e_j), d_i) \]
Symbolic detection of confluence

\[X(g : G) = \sum_{d_i : D_i} c_i \Rightarrow \tau \cdot X(n_i) \]

\[+ \sum_{d_j : D_j} c_j \Rightarrow a_j \sum_{e_j : E_j} f_j \cdot X(n_j) \]

Two summands \(i, j \) commute if

\[\forall g, d_i, d_j, e_j : (c_i(g, d_i) \land c_j(g, d_j)) \rightarrow \]

\[\begin{align*}
 c_j(n_i(g, d_i), d_j) \land c_i(n_j(g, d_j, e_j), d_i) \\
 \land a_j(g, d_j) = a_j(n_i(g, d_i), d_j) \\
 \land n_j(n_i(g, d_i), d_j, e_j) = n_i(n_j(g, d_j, e_j), d_i) \\
 \land f_j(g, d_j, e_j) = f_j(n_i(g, d_i), d_j, e_j)
\end{align*} \]
Symbolic detection of confluence

\[X(g : G) = \sum_{d_i : D_i} c_i \Rightarrow \tau \cdot X(n_i) \]

\[+ \sum_{d_j : D_j} c_j \Rightarrow a_j \sum_{e_j : E_j} f_j : X(n_j) \]

Two summands \(i, j \) commute if

\[\forall g, d_i, d_j, e_j : (c_i(g, d_i) \land c_j(g, d_j)) \rightarrow \]

\[\begin{align*}
& c_j(n_i(g, d_i), d_j) \land c_i(n_j(g, d_j, e_j), d_i) \\
& \land a_j(g, d_j) = a_j(n_i(g, d_i), d_j) \\
& \land n_j(n_i(g, d_i), d_j, e_j) = n_i(n_j(g, d_j, e_j), d_i) \\
& \land f_j(g, d_j, e_j) = f_j(n_i(g, d_i), d_j, e_j)
\end{align*} \]

Theorem

If summand \(i \) commutes with all summands \(j \), then it generates a strong probabilistic confluent set of \(\tau \)-steps.
PINS interface in LTSmin

- PINS provides a Partitioned Next-State Interface
- Decouples specification languages from backend algorithms
Overview of LTSmin Functionality

LTSmin backend algorithms

- **distributed** (cluster/Grid): generation + minimization
- **multicore** (shared memory): generation + LTL model checking
- **symbolic** (BDD/MDD-based): generation + mu-calculus
Overview of LTSmin Functionality

LTSmin backend algorithms

- **distributed** (cluster/Grid): generation + minimization
- **multicore** (shared memory): generation + LTL model checking
- **symbolic** (BDD/MDD-based): generation + mu-calculus

NEW: multicore symbolic operations PDMC 2012
Overview of LTSmin Functionality

LTSmin backend algorithms
- **distributed** (cluster/Grid): generation + minimization
- **multicore** (shared memory): generation + LTL model checking
- **symbolic** (BDD/MDD-based): generation + mu-calculus

NEW: multicore symbolic operations PDMC 2012

LTSmin language modules
- **mCRL2**: action based process algebra
- **Promela**: state based
- **UPPAAL**: timed automata, with zones (external DBM)
SCOOP provides tool support for MAPA

- Stand-alone version, and web-based interface
- Available at fmt.cs.utwente.nl/~timmer/scoop
- Supports linearization, optimization, state space generation
- Export facilities to model checkers (PRISM, CDP, IMCA)
- Programmed in Haskell
Specification:

\[X = \text{tau}.X[] ++ <5>.X[] \]

init X

Constants (name = value):

+

- prCRL mode
 - Show LPPE (use prCRL syntax)
 - Translate specification to PRISM formula

- MAPA mode
 - Show MLPPE (use MAPA syntax)
 - Do not apply the maximal progress reduction
 - Apply maximal progress reduction

- Show statespace in AUT format
- Show statespace as the actual state
- Show the number of states and transitions
- Show verbose output
X =

(T => tau . X[])

Initial state: X

Powered by puptol
Analysis of Generalized Stochastic Petri Nets (GSPN)

GSPN (PNML)

reach P1 = 1 & P5 = 2
Analysis of Generalized Stochastic Petri Nets (GSPN)

GSPN (PNML)

reach \(P_1 = 1 \) & \(P_5 = 2 \)

GEMMA

\[
\]
\[
P2 \geq 1 \Rightarrow T2 .
\]
\[
\text{GSPN[P2--, P4++]} +
\]
\[
P5 \geq 1 \Rightarrow (4.0) .
\]
\[
\text{GSPN[P2++, P5--]} +
\]
\[
\text{...}
\]
\[
\text{init GSPN(1,1,1,0,1)}
\]

reach \(P_1 = 1 \) & \(P_5 = 2 \)

MAPA
Analysis of Generalized Stochastic Petri Nets (GSPN)

GSPN (PNML)

reach P1 = 1 & P5 = 2

GEMMA

GSPN(P1:N,P2:N,P3:N,
P4:N,P5:N) =
P2 >= 1 => T2 .
GSPN[P2--, P4++]
+ P5 >= 1 => (4.0) .
GSPN[P2++, P5--]
+ ...
init GSPN(1,1,1,0,1)

reach P1 = 1 & P5 = 2

MAPA

SCOOOP

#GOALS S4

MA
Analysis of Generalized Stochastic Petri Nets (GSPN)

GSPN (PNML)

reach P1 = 1 & P5 = 2

P2 >= 1 => T2 .
GSPN[P2--, P4++]
+ P5 >= 1 => (4.0) .
GSPN[P2++, P5--]
+ ...

init GSPN(1,1,1,0,1)

reach P1 = 1 & P5 = 2

MAPA

GEMMA

SCOOOP (optimised)

MA

#GOALS S2
Analysis of Generalized Stochastic Petri Nets (GSPN)

GSPN (PNML)

P2 >= 1 => T2 .
GSPN[P2--, P4++] + P5 >= 1 => (4.0) .
GSPN[P2++, P5--] + ...
init GSPN(1,1,1,0,1)
reach P1 = 1 & P5 = 2

GEMMA

reach P1 = 1 & P5 = 2

MAPA

Min. unbounded reach.: 1.0
Max. unbounded reach.: 1.0
Min. expected time: 0.0
Max. expected time: 0.2
Min. LRA: 0.0
Max. LRA: 0.4

Results

#GOALS S2

SCOOPE (optimised)

#GOALS S2

IMCA

MA

UNIVERSITY OF TWENTE.
Symbolic Manipulation of Markov Automata
September 8, 2012
24 / 26
Conclusion and Future Work

Scalable model checking for quantitative models

<table>
<thead>
<tr>
<th>feature</th>
<th>Process Algebra</th>
<th>Linear Format</th>
<th>Static Analysis</th>
<th>Confluence Reduction</th>
<th>High-Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>μCRL</td>
<td>LPE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>probability</td>
<td>prCRL</td>
<td>LPPE</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Markovian</td>
<td>MAPA</td>
<td>MLPPE</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Conclusion and Future Work

Scalable model checking for quantitative models

<table>
<thead>
<tr>
<th>feature</th>
<th>Process Algebra</th>
<th>Linear Format</th>
<th>Static Analysis</th>
<th>Confluence Reduction</th>
<th>High-Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>μCRL</td>
<td>LPE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>probability</td>
<td>prCRL</td>
<td>LPPE</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Markovian</td>
<td>MAPA</td>
<td>MLPPE</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

All **MA** results also apply to **LTS**, **DTMC**, **CTMC**, **IMC**, **MDP**, **PA**
Conclusion and Future Work

Scalable model checking for quantitative models

<table>
<thead>
<tr>
<th>feature</th>
<th>Process Algebra</th>
<th>Linear Format</th>
<th>Static Analysis</th>
<th>Confluence Reduction</th>
<th>High-Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>(\mu\text{CRL})</td>
<td>LPE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>probability</td>
<td>prCRL</td>
<td>LPPE</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Markovian</td>
<td>MAPA</td>
<td>MLPPE</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

All MA results also apply to LTS, DTMC, CTMC, IMC, MDP, PA

Future Work:
- Generalise confluence reduction to MAs and MAPA
- Link SCOOP to LTSmin’s symbolic and multi-core algorithms
- Performance analysis of LTSmin’s multi-core data structures
Questions? Read on!

Have a look at fmt.cs.utwente.nl/~timmer/scoop/

- Mark Timmer, **SCOOP: A Tool for Symbolic Optimisations Of Probabilistic Processes** .. QEST 2011
- Mark Timmer, Mariëlle Stoelinga & Jaco van de Pol, **Confluence Reduction for Probabilistic Systems** TACAS 2011
- J-P Katoen, Jaco van de Pol, Mariëlle Stoelinga & Mark Timmer, **A linear process-algebraic format with data for probabilistic automata**, .. Theoretical Computer Science, 413(1), 2012
- Mark Timmer, J-P Katoen, Jaco van de Pol & Mariëlle Stoelinga, **Efficient Modelling and Generation of Markov Automata** . CONCUR 2012
Questions? Read on!

Have a look at fmt.cs.utwente.nl/~timmer/scoop/

- Mark Timmer, Mariëlle Stoelinga & Jaco van de Pol, Confluence Reduction for Probabilistic Systems TACAS 2011
- J-P Katoen, Jaco van de Pol, Mariëlle Stoelinga & Mark Timmer, A linear process-algebraic format with data for probabilistic automata, Theoretical Computer Science, 413(1), 2012
- Mark Timmer, J-P Katoen, Jaco van de Pol & Mariëlle Stoelinga, Efficient Modelling and Generation of Markov Automata .CONCUR 2012

Have another look at fmt.cs.utwente.nl/tools/ltsmin/

- Stefan Blom, Jaco van de Pol & Michael Weber, LTSmin: Distributed and Symbolic Reachability CAV 2010
- Alfons Laarman, Jaco van de Pol & Michael Weber, Multi-Core LTSmin: Marrying Modularity and Scalability NFM 2011
- Tom van Dijk, Alfons Laarman & Jaco van de Pol, Multi-core BDD Operations for Symbolic Reachability PDMC 2012